In addition to inhibiting cholesterol biosynthesis, statins increase the conversion of linoleic acid to its derivatives, in particular to arachidonic acid, both in vivo and in vitro. Desaturases are the rate-limiting enzymes in this metabolic process and statins markedly enhance delta5 desaturase activity. To evaluate the delta5 desaturase gene expression and the transcription factors involved, THP-1 cells (a monocytic cell line) were incubated with 5 microM simvastatin for different time periods. The activity of the enzyme, evaluated as product/precursor ratio in the metabolic pathway (starting from [1-(14)C] linoleic acid), increased in treated cells with respect to controls after 24 h, whereas, mRNA levels of the delta5 desaturase increased after 12 h of incubation with simvastatin. Fatty acid desaturase genes are regulated by both sterol regulatory element binding proteins (SREBPs) and peroxisome proliferators activated receptors (PPARs). Both PPARalpha (WY 14643 and fenofibrate) and PPARgamma (ciglitazone) agonists did not affect linoleic acid conversion and the delta5 desaturase activity at any time considered (8-48 h), but they increased the delta5 desaturase mRNA levels, after 48 h; only fenofibrate showed a synergistic effect with simvastatin at this time, with a concomitantly increase in PPARalpha expression and beta-oxidation. Simvastatin alone increased SREBP-1 levels with respect to controls, starting from 8 h of incubation, whereas PPARalpha and linoleic acid beta-oxidation (a PPARalpha mediated process) were not affected after 48 h of incubation. These results taken together suggest that SREBP-1 is involved in the early regulation of delta5 desaturase gene by simvastatin, in THP-1 cells

Delta5 desaturase mRNA levels are increased by simvastatin via SREBP-1 at early stages, not via PPARalpha, in THP-1 cells / P. Risé, S. Ghezzi, R. Carissimi, F. Mastromauro, A. Petroni, C. Galli. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - 571:2-3(2007), pp. 97-105. [10.1016/j.ejphar.2007.06.021]

Delta5 desaturase mRNA levels are increased by simvastatin via SREBP-1 at early stages, not via PPARalpha, in THP-1 cells

P. Risé;S. Ghezzi;R. Carissimi;A. Petroni;C. Galli
2007

Abstract

In addition to inhibiting cholesterol biosynthesis, statins increase the conversion of linoleic acid to its derivatives, in particular to arachidonic acid, both in vivo and in vitro. Desaturases are the rate-limiting enzymes in this metabolic process and statins markedly enhance delta5 desaturase activity. To evaluate the delta5 desaturase gene expression and the transcription factors involved, THP-1 cells (a monocytic cell line) were incubated with 5 microM simvastatin for different time periods. The activity of the enzyme, evaluated as product/precursor ratio in the metabolic pathway (starting from [1-(14)C] linoleic acid), increased in treated cells with respect to controls after 24 h, whereas, mRNA levels of the delta5 desaturase increased after 12 h of incubation with simvastatin. Fatty acid desaturase genes are regulated by both sterol regulatory element binding proteins (SREBPs) and peroxisome proliferators activated receptors (PPARs). Both PPARalpha (WY 14643 and fenofibrate) and PPARgamma (ciglitazone) agonists did not affect linoleic acid conversion and the delta5 desaturase activity at any time considered (8-48 h), but they increased the delta5 desaturase mRNA levels, after 48 h; only fenofibrate showed a synergistic effect with simvastatin at this time, with a concomitantly increase in PPARalpha expression and beta-oxidation. Simvastatin alone increased SREBP-1 levels with respect to controls, starting from 8 h of incubation, whereas PPARalpha and linoleic acid beta-oxidation (a PPARalpha mediated process) were not affected after 48 h of incubation. These results taken together suggest that SREBP-1 is involved in the early regulation of delta5 desaturase gene by simvastatin, in THP-1 cells
Fatty acid desaturases ; HMG-CoA reductase inhibitors ; statins ; cultured cells ; linoleic acid conversion ; cholesterol biosynthesis ;
Settore BIO/14 - Farmacologia
EUROPEAN JOURNAL OF PHARMACOLOGY
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/35053
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact