Glutathione (GSH) is one of the most important defense mechanisms against oxidative stress in the respiratory epithelial lining fluid. Considering that GSH secretion in respiratory cells has been postulated to be at least partially electrogenic, and that the mucoregulator S-carbocysteine lysine salt monohydrate (S-CMC-Lys) can cause an activation of epithelial Cl(-) conductance, the purpose of this study was to verify whether S-CMC-Lys is able to stimulate GSH secretion. Experiments have been performed by patch-clamp technique, by high-performance liquid chromatography (HPLC) assay, and by Western blot analysis on cultured lines of human respiratory cells (WI-26VA4 and CFT1-C2). In whole-cell configuration, after cell exposure to 100 microM S-CMC-Lys, a current due to an outward GSH flux was observed, which was inhibitable by 5-nitro-2-(3-phenylpropylamino)-benzoate and glibenclamide. This current was not observed in CFT1-C2 cells, where a functional cystic fibrosis transmembrane conductance regulator (CFTR) is lacking. Inside-out patch-clamp experiments (GSH on the cytoplasm side, Cl(-) on the extracellular side) showed the activity of a channel, which was able to conduct current in both directions: the single channel conductance was 2-4 pS, and the open probability (P(o)) was low and voltage-independent. After preincubation with 100 microM S-CMC-Lys, there was an increase in P(o), in the number of active channels present in each patch, and in the relative permeability to GSH vs Cl(-). Outwardly directed efflux of GSH could also be increased by protein kinase A, adenosine 5'-triphosphate, and cyclic adenosine monophosphate (cAMP) added to the cytoplasmic side (whole-cell configuration). The increased secretion of GSH observed in the presence of S-CMC-Lys or 8-bromoadenosine-3',5'-cyclic monophosphate was also confirmed by HPLC assay of GSH on a confluent monolayer of respiratory cells. Western blot analysis confirmed the presence of CFTR in WI-26VA4 cells. This study suggests that S-CMC-Lys is able to stimulate a channel-mediated GSH secretion by human respiratory cells: electrophysiological and pharmacological characteristics of this channel are similar to those of the CFTR channel.

S-CMC-Lys-dependent stimulation of electrogenic glutathione secretion by human respiratory epithelium / F. Guizzardi, S. Rodighiero, A. Binelli, S. Saino, E. Bononi, S. Dossena, M.L. Garavaglia, C. Bazzini, G. Botta, M. Conese, L. Daffonchio, R. Novellini, M. Paulmichl, G. Meyer. - In: JOURNAL OF MOLECULAR MEDICINE. - ISSN 0946-2716. - 84:1(2006), pp. 97-107.

S-CMC-Lys-dependent stimulation of electrogenic glutathione secretion by human respiratory epithelium

F. Guizzardi
Primo
;
S. Rodighiero
Secondo
;
A. Binelli;S. Saino;E. Bononi;S. Dossena;M.L. Garavaglia;C. Bazzini;G. Botta;M. Paulmichl
Penultimo
;
G. Meyer
Ultimo
2006

Abstract

Glutathione (GSH) is one of the most important defense mechanisms against oxidative stress in the respiratory epithelial lining fluid. Considering that GSH secretion in respiratory cells has been postulated to be at least partially electrogenic, and that the mucoregulator S-carbocysteine lysine salt monohydrate (S-CMC-Lys) can cause an activation of epithelial Cl(-) conductance, the purpose of this study was to verify whether S-CMC-Lys is able to stimulate GSH secretion. Experiments have been performed by patch-clamp technique, by high-performance liquid chromatography (HPLC) assay, and by Western blot analysis on cultured lines of human respiratory cells (WI-26VA4 and CFT1-C2). In whole-cell configuration, after cell exposure to 100 microM S-CMC-Lys, a current due to an outward GSH flux was observed, which was inhibitable by 5-nitro-2-(3-phenylpropylamino)-benzoate and glibenclamide. This current was not observed in CFT1-C2 cells, where a functional cystic fibrosis transmembrane conductance regulator (CFTR) is lacking. Inside-out patch-clamp experiments (GSH on the cytoplasm side, Cl(-) on the extracellular side) showed the activity of a channel, which was able to conduct current in both directions: the single channel conductance was 2-4 pS, and the open probability (P(o)) was low and voltage-independent. After preincubation with 100 microM S-CMC-Lys, there was an increase in P(o), in the number of active channels present in each patch, and in the relative permeability to GSH vs Cl(-). Outwardly directed efflux of GSH could also be increased by protein kinase A, adenosine 5'-triphosphate, and cyclic adenosine monophosphate (cAMP) added to the cytoplasmic side (whole-cell configuration). The increased secretion of GSH observed in the presence of S-CMC-Lys or 8-bromoadenosine-3',5'-cyclic monophosphate was also confirmed by HPLC assay of GSH on a confluent monolayer of respiratory cells. Western blot analysis confirmed the presence of CFTR in WI-26VA4 cells. This study suggests that S-CMC-Lys is able to stimulate a channel-mediated GSH secretion by human respiratory cells: electrophysiological and pharmacological characteristics of this channel are similar to those of the CFTR channel.
Antioxidants; CFTR protein; Ion channels; Patch-clamp techniques; S-carbocysteine-Lys
Settore BIO/09 - Fisiologia
2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/27730
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact