The pressure on agro-livestock systems calls for a critical review of production systems focusing on efficiency and sustainability. Cultured meat (CM) emerges as an alternative production but requires comparable parameters for evaluation. This paper proposes a hypothetical reformulation of the concept of Feed Conversion Rate (FCR) and Edible Meat ConversionRate (EMCR), traditionally employed in animal-derived food production, by adapting it to the context of cellular agriculture, in particular to CM. After an analysis of the FCR in the main conventional sectors (poultry, swine, cattle and fish), used for the calculation of EMCR, a theoretical model was developed for the calculation of the Cultured Meat Conversion Ratio (CMCR), based on the chemical composition of the culture media. The estimated CMCRs (0.316–0.687) and the CMCR on a dry matter basis for CM (2.29) were lower than those reported for traditional animal supply chains, indicating a potentially higher theoretical efficiency. However, these estimates do not account for the specific resources required to produce the ingredients of the culture medium, the actual metabolic efficiency of the cells, the accumulation of toxic metabolites (e.g., ammonia, lactate), nor the potential impact of future media formulations based on alternatives to foetal bovine serum. Although a theoretical calculation, this study provides a useful conceptual framework for the definition and optimisation of FCR in alternative cell culture systems, laying the basis for the development of reliable metrics in cellular agriculture and comparative evaluation between innovative and conventional food systems.

Hypothetical feed conversion efficiency of cultured meat compared to conventional animal production / D. Lanzoni, I. Givens, C. Giromini. - In: FUTURE FOODS. - ISSN 2666-8335. - 12:(2025 Dec), pp. 100767.1-100767.14. [10.1016/j.fufo.2025.100767]

Hypothetical feed conversion efficiency of cultured meat compared to conventional animal production

D. Lanzoni
Primo
;
C. Giromini
Ultimo
2025

Abstract

The pressure on agro-livestock systems calls for a critical review of production systems focusing on efficiency and sustainability. Cultured meat (CM) emerges as an alternative production but requires comparable parameters for evaluation. This paper proposes a hypothetical reformulation of the concept of Feed Conversion Rate (FCR) and Edible Meat ConversionRate (EMCR), traditionally employed in animal-derived food production, by adapting it to the context of cellular agriculture, in particular to CM. After an analysis of the FCR in the main conventional sectors (poultry, swine, cattle and fish), used for the calculation of EMCR, a theoretical model was developed for the calculation of the Cultured Meat Conversion Ratio (CMCR), based on the chemical composition of the culture media. The estimated CMCRs (0.316–0.687) and the CMCR on a dry matter basis for CM (2.29) were lower than those reported for traditional animal supply chains, indicating a potentially higher theoretical efficiency. However, these estimates do not account for the specific resources required to produce the ingredients of the culture medium, the actual metabolic efficiency of the cells, the accumulation of toxic metabolites (e.g., ammonia, lactate), nor the potential impact of future media formulations based on alternatives to foetal bovine serum. Although a theoretical calculation, this study provides a useful conceptual framework for the definition and optimisation of FCR in alternative cell culture systems, laying the basis for the development of reliable metrics in cellular agriculture and comparative evaluation between innovative and conventional food systems.
Cellular agriculture; Cellular food; Cultured meat; FCR; Meat production;
Settore AGRI-09/B - Nutrizione e alimentazione animale
   Cellular agriculture for sustainable and innovative food production- CELLtoFOOD
   CELLtoFOOD
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
   20229S4T77_001
dic-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
fut foods.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1187795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact