The molecular events underlying the variable effectiveness of dopamine receptor type 2 (DRD2) agonists in pituitary neuroendocrine tumors (PitNETs) are not known. Besides the canonical pathway induced by DRD2 coupling with Gi proteins, the β-arrestin 2 pathway contributes to DRD2′s antimitotic effects in PRL- and NF-PitNETs. A promising pharmacological strategy is the use of DRD2-biased agonists that selectively activate only one of these two pathways. The aim of the present study was to compare the effects of two biased DRD2 ligands, selectively activating the G protein (MLS1547) or β-arrestin 2 (UNC9994) pathway, with unbiased DRD2 agonist cabergoline in PRL- and NF-PitNET cells. In rat tumoral pituitary PRL-secreting MMQ cells, UNC9994 reduced cell proliferation with a greater efficacy compared to cabergoline (−40.2 ± 20.4% vs. −21 ± 10.9%, p < 0.05), whereas the G-protein-biased agonist induced only a slight reduction. β-arrestin 2 silencing, but not pertussis toxin treatment, reverted UNC9994 and cabergoline’s antiproliferative effects. In a cabergoline-resistant PRL-PitNET primary culture, UNC9994 inhibited cell proliferation and PRL release. In contrast, in NF-PitNET primary cultures (n = 23), biased agonists did not show better antiproliferative effects than cabergoline. In conclusion, the preferential activation of the β-arrestin 2 pathway by UNC9994 improves DRD2-mediated antiproliferative effects in PRL-PitNETs, suggesting a new pharmacological approach for resistant or poorly responsive tumors.
A β-Arrestin 2-Biased Dopamine Receptor Type 2 (DRD2) Agonist Is More Efficacious Than Cabergoline in Reducing Cell Proliferation in PRL-Secreting but Not in Non-Functioning Pituitary Tumor Cells / G. Di Muro, F. Mangili, E. Esposito, A.M. Barbieri, R. Catalano, D. Treppiedi, G. Marra, E. Nozza, A.G.A. Lania, E. Ferrante, M. Locatelli, M. Arosio, E. Peverelli, G. Mantovani. - In: CANCERS. - ISSN 2072-6694. - 15:12(2023 Jun 16), pp. 3218.1-3218.13. [10.3390/cancers15123218]
A β-Arrestin 2-Biased Dopamine Receptor Type 2 (DRD2) Agonist Is More Efficacious Than Cabergoline in Reducing Cell Proliferation in PRL-Secreting but Not in Non-Functioning Pituitary Tumor Cells
G. Di MuroCo-primo
;F. MangiliCo-primo
;A.M. Barbieri;R. Catalano;D. Treppiedi;G. Marra;E. Nozza;E. Ferrante;M. Locatelli;M. Arosio;E. PeverelliCo-ultimo
;G. MantovaniCo-ultimo
2023
Abstract
The molecular events underlying the variable effectiveness of dopamine receptor type 2 (DRD2) agonists in pituitary neuroendocrine tumors (PitNETs) are not known. Besides the canonical pathway induced by DRD2 coupling with Gi proteins, the β-arrestin 2 pathway contributes to DRD2′s antimitotic effects in PRL- and NF-PitNETs. A promising pharmacological strategy is the use of DRD2-biased agonists that selectively activate only one of these two pathways. The aim of the present study was to compare the effects of two biased DRD2 ligands, selectively activating the G protein (MLS1547) or β-arrestin 2 (UNC9994) pathway, with unbiased DRD2 agonist cabergoline in PRL- and NF-PitNET cells. In rat tumoral pituitary PRL-secreting MMQ cells, UNC9994 reduced cell proliferation with a greater efficacy compared to cabergoline (−40.2 ± 20.4% vs. −21 ± 10.9%, p < 0.05), whereas the G-protein-biased agonist induced only a slight reduction. β-arrestin 2 silencing, but not pertussis toxin treatment, reverted UNC9994 and cabergoline’s antiproliferative effects. In a cabergoline-resistant PRL-PitNET primary culture, UNC9994 inhibited cell proliferation and PRL release. In contrast, in NF-PitNET primary cultures (n = 23), biased agonists did not show better antiproliferative effects than cabergoline. In conclusion, the preferential activation of the β-arrestin 2 pathway by UNC9994 improves DRD2-mediated antiproliferative effects in PRL-PitNETs, suggesting a new pharmacological approach for resistant or poorly responsive tumors.File | Dimensione | Formato | |
---|---|---|---|
cancers-15-03218.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.