Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by relentless and progressive loss of motor neurons. A molecular diagnosis, supported by the identification of specific biomarkers, might promote the definition of multiple biological subtypes of ALS, improving patient stratification and providing prognostic information. Here, we investigated the levels of neurofilament light chain (NfL), chitotriosidase (CHIT1) and microRNA-181b (miR-181b) in the cerebrospinal fluid (CSF) of ALS subjects (N = 210) as well as neurologically healthy and neurological disease controls (N = 218, including N = 74 with other neurodegenerative diseases) from a large European multicentric cohort, evaluating their specific or combined utility as diagnostic and prognostic biomarkers. NfL, CHIT1 and miR-181b all showed significantly higher levels in ALS subjects compared to controls, with NfL showing the most effective diagnostic performance. Importantly, all three biomarkers were increased compared to neurodegenerative disease controls and, specifically, to patients with Alzheimer's disease (AD; N = 44), with NfL and CHIT1 being also higher in ALS than in alpha-synucleinopathies (N = 22). Notably, ALS patients displayed increased CHIT1 levels despite having, compared to controls, a higher prevalence of a polymorphism lowering CHIT1 expression. While no relationship was found between CSF miR-181b and clinical measures in ALS (disease duration, functional disability, and disease progression rate), CSF NfL was the best independent predictor of disease progression and survival. This study deepens our knowledge of ALS biomarkers, highlighting the relative specificity of CHIT1 for ALS among neurodegenerative diseases and appraising the potential diagnostic utility of CSF miR-181b.

Exploiting the role of CSF NfL, CHIT1, and miR-181b as potential diagnostic and prognostic biomarkers for ALS / D. Gagliardi, M. Rizzuti, P. Masrori, D. Saccomanno, R. Del Bo, L. Sali, M. Meneri, S. Scarcella, I. Milone, N. Hersmus, A. Ratti, N. Ticozzi, V. Silani, K. Poesen, P. Van Damme, G.P. Comi, S. Corti, F. Verde. - In: JOURNAL OF NEUROLOGY. - ISSN 1432-1459. - (2024), pp. 1-15. [10.1007/s00415-024-12699-1]

Exploiting the role of CSF NfL, CHIT1, and miR-181b as potential diagnostic and prognostic biomarkers for ALS

R. Del Bo;S. Scarcella;A. Ratti;N. Ticozzi;G.P. Comi;S. Corti
Penultimo
;
F. Verde
Ultimo
2024

Abstract

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by relentless and progressive loss of motor neurons. A molecular diagnosis, supported by the identification of specific biomarkers, might promote the definition of multiple biological subtypes of ALS, improving patient stratification and providing prognostic information. Here, we investigated the levels of neurofilament light chain (NfL), chitotriosidase (CHIT1) and microRNA-181b (miR-181b) in the cerebrospinal fluid (CSF) of ALS subjects (N = 210) as well as neurologically healthy and neurological disease controls (N = 218, including N = 74 with other neurodegenerative diseases) from a large European multicentric cohort, evaluating their specific or combined utility as diagnostic and prognostic biomarkers. NfL, CHIT1 and miR-181b all showed significantly higher levels in ALS subjects compared to controls, with NfL showing the most effective diagnostic performance. Importantly, all three biomarkers were increased compared to neurodegenerative disease controls and, specifically, to patients with Alzheimer's disease (AD; N = 44), with NfL and CHIT1 being also higher in ALS than in alpha-synucleinopathies (N = 22). Notably, ALS patients displayed increased CHIT1 levels despite having, compared to controls, a higher prevalence of a polymorphism lowering CHIT1 expression. While no relationship was found between CSF miR-181b and clinical measures in ALS (disease duration, functional disability, and disease progression rate), CSF NfL was the best independent predictor of disease progression and survival. This study deepens our knowledge of ALS biomarkers, highlighting the relative specificity of CHIT1 for ALS among neurodegenerative diseases and appraising the potential diagnostic utility of CSF miR-181b.
ALS; Biomarker; CHIT1; CSF; MiR-181b; NfL
Settore MEDS-12/A - Neurologia
   Assegnazione Dipartimenti di Eccellenza 2023-2027 - Dipartimento di FISIOPATOLOGIA MEDICO-CHIRURGICA E DEI TRAPIANTI
   DECC23_009
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA
2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00415-024-12699-1.pdf

accesso aperto

Descrizione: Original Communication
Tipologia: Publisher's version/PDF
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1119441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact