A novel method was developed for virus-like particle (VLP) extraction and characterization from biological soil crust (BSC) after microbial community reactivation. The method consisted of a single cell analysis by flow cytometry to monitor viable cells in BSC reactivated under controlled hydration, temperature, and light/dark exposure. Then, VLPs were extracted from reactivated BSCs, followed by viral DNA extraction and shotgun metagenomic analysis. The hydrated BSC under light/dark conditions showed the highest number of viable cells, and this condition was optimal for VLPs isolation. Taxonomic composition showed that families of the order of Caudovirales (Podoviridae, Myoviridae and Syphoviridiae) were the most abundant double strand DNA phages while Microviridiae were the most abundant single strand DNA phages. The isolated VLPs also carried sequences of relevant bacterial inhabiting soil. The functional categories of “phages, prophages, transposable elements, plasmids” and “clustering-base subsystem” were abundant (38 and 12%, respectively). All these data suggest viral predation as a key factor in shaping and maintaining bacterial diversity in the BSCs.

Virus-like particles isolated from reactivated biological soil crusts / G. Mugnai, M. Stuknytė, S. Arioli, G. Gargari, A. Adessi, D. Mora. - In: BIOLOGY AND FERTILITY OF SOILS. - ISSN 0178-2762. - 57:6(2021 Aug), pp. 863-868. [10.1007/s00374-021-01567-z]

Virus-like particles isolated from reactivated biological soil crusts

G. Mugnai
Primo
;
S. Arioli;G. Gargari;D. Mora
Ultimo
2021

Abstract

A novel method was developed for virus-like particle (VLP) extraction and characterization from biological soil crust (BSC) after microbial community reactivation. The method consisted of a single cell analysis by flow cytometry to monitor viable cells in BSC reactivated under controlled hydration, temperature, and light/dark exposure. Then, VLPs were extracted from reactivated BSCs, followed by viral DNA extraction and shotgun metagenomic analysis. The hydrated BSC under light/dark conditions showed the highest number of viable cells, and this condition was optimal for VLPs isolation. Taxonomic composition showed that families of the order of Caudovirales (Podoviridae, Myoviridae and Syphoviridiae) were the most abundant double strand DNA phages while Microviridiae were the most abundant single strand DNA phages. The isolated VLPs also carried sequences of relevant bacterial inhabiting soil. The functional categories of “phages, prophages, transposable elements, plasmids” and “clustering-base subsystem” were abundant (38 and 12%, respectively). All these data suggest viral predation as a key factor in shaping and maintaining bacterial diversity in the BSCs.
Biological soil crust; Flow cytometry; Light/dark cycles; Viability; Virome
Settore AGR/16 - Microbiologia Agraria
ago-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00374-021-01567-z.pdf

accesso riservato

Descrizione: Short Communication
Tipologia: Publisher's version/PDF
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1067448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact