We establish a sharp Moser type inequality with logarithmic weight in the nonradial mass- weighted Sobolev spaces, on the whole plane R2. We identify the sharp threshold for the uniform boundedness of the weighted Moser functional, which is still given by 4𝜋: further, we prove the validity of the inequality also at the limiting sharp value 4𝜋. Even if the increasing nature of the log weight prevents the application of any symmetrization tool, we prove our inequality in the general framework of Sobolev space, and not on radial subspaces, as in the available literature. The main strategy is a careful analysis of the behaviour of the normalized maximizing sequences.
A log-weighted Moser inequality on the plane / C. Tarsi. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 241:(2024), pp. 113466.1-113466.14. [10.1016/j.na.2023.113466]
A log-weighted Moser inequality on the plane
C. Tarsi
2024
Abstract
We establish a sharp Moser type inequality with logarithmic weight in the nonradial mass- weighted Sobolev spaces, on the whole plane R2. We identify the sharp threshold for the uniform boundedness of the weighted Moser functional, which is still given by 4𝜋: further, we prove the validity of the inequality also at the limiting sharp value 4𝜋. Even if the increasing nature of the log weight prevents the application of any symmetrization tool, we prove our inequality in the general framework of Sobolev space, and not on radial subspaces, as in the available literature. The main strategy is a careful analysis of the behaviour of the normalized maximizing sequences.File | Dimensione | Formato | |
---|---|---|---|
Tarsi_NonAnal_rev.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
541.24 kB
Formato
Adobe PDF
|
541.24 kB | Adobe PDF | Visualizza/Apri |
Tarsi_NonAnal_copy.pdf
accesso riservato
Descrizione: Research Paper
Tipologia:
Publisher's version/PDF
Dimensione
586.84 kB
Formato
Adobe PDF
|
586.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.