We establish a sharp Moser type inequality with logarithmic weight in the nonradial mass- weighted Sobolev spaces, on the whole plane R2. We identify the sharp threshold for the uniform boundedness of the weighted Moser functional, which is still given by 4𝜋: further, we prove the validity of the inequality also at the limiting sharp value 4𝜋. Even if the increasing nature of the log weight prevents the application of any symmetrization tool, we prove our inequality in the general framework of Sobolev space, and not on radial subspaces, as in the available literature. The main strategy is a careful analysis of the behaviour of the normalized maximizing sequences.

A log-weighted Moser inequality on the plane / C. Tarsi. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 241:(2024), pp. 113466.1-113466.14. [10.1016/j.na.2023.113466]

A log-weighted Moser inequality on the plane

C. Tarsi
2024

Abstract

We establish a sharp Moser type inequality with logarithmic weight in the nonradial mass- weighted Sobolev spaces, on the whole plane R2. We identify the sharp threshold for the uniform boundedness of the weighted Moser functional, which is still given by 4𝜋: further, we prove the validity of the inequality also at the limiting sharp value 4𝜋. Even if the increasing nature of the log weight prevents the application of any symmetrization tool, we prove our inequality in the general framework of Sobolev space, and not on radial subspaces, as in the available literature. The main strategy is a careful analysis of the behaviour of the normalized maximizing sequences.
Trudinger-Moser inequalities; weighted Sobolev spaces; concentration-compactness at infinity
Settore MAT/05 - Analisi Matematica
2024
22-dic-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Tarsi_NonAnal_rev.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 541.24 kB
Formato Adobe PDF
541.24 kB Adobe PDF Visualizza/Apri
Tarsi_NonAnal_copy.pdf

accesso riservato

Descrizione: Research Paper
Tipologia: Publisher's version/PDF
Dimensione 586.84 kB
Formato Adobe PDF
586.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1042315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact