Our main focus concerns a possible lax version of the algebraic property of protomodularity for Ord-enriched categories. Having in mind the role of comma objects in the enriched context, we consider some of the characteristic properties of protomodularity with respect to comma objects instead of pullbacks. We show that the equivalence between protomodularity and certain properties on pullbacks also holds when replacing conveniently pullbacks by comma objects in any finitely complete category enriched in Ord, and propose to call lax protomodular such Ord-enriched categories. We conclude by studying this sort of lax protomodularity for the category OrdAb of preordered abelian groups, equipped with a suitable Ord-enrichment, and show that OrdAb fulfills the equivalent lax protomodular properties with respect to the weaker notion of precomma object; we call such categories lax preprotomodular.

On lax protomodularity for Ord-enriched categories / M.M. Clementino, A. Montoli, D. Rodelo. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 227:8(2023), pp. 107348.1-107348.21. [10.1016/j.jpaa.2023.107348]

On lax protomodularity for Ord-enriched categories

A. Montoli
Secondo
;
2023

Abstract

Our main focus concerns a possible lax version of the algebraic property of protomodularity for Ord-enriched categories. Having in mind the role of comma objects in the enriched context, we consider some of the characteristic properties of protomodularity with respect to comma objects instead of pullbacks. We show that the equivalence between protomodularity and certain properties on pullbacks also holds when replacing conveniently pullbacks by comma objects in any finitely complete category enriched in Ord, and propose to call lax protomodular such Ord-enriched categories. We conclude by studying this sort of lax protomodularity for the category OrdAb of preordered abelian groups, equipped with a suitable Ord-enrichment, and show that OrdAb fulfills the equivalent lax protomodular properties with respect to the weaker notion of precomma object; we call such categories lax preprotomodular.
Categories enriched in the category of preorders; Preordered abelian groups; Protomodular categories
Settore MAT/02 - Algebra
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
CMR lax protomodularity JPAA revised.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 555.28 kB
Formato Adobe PDF
555.28 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022404923000312-main.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 454.55 kB
Formato Adobe PDF
454.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/985932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact