Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here, we have developed a protocol that performs a series of molecular dynamics simulations from a set of structures predicted de novo by recent machine learning algorithms and apply it to a well-studied receptor, the human OR51E2. Our study demonstrates the need for simulations to refine and validate such models. Furthermore, we demonstrate the need for the sodium ion at a binding site near D2.50 and E3.39 to stabilize the inactive state of the receptor. Considering the conservation of these two acidic residues across human ORs, we surmise this requirement also applies to the other similar to 400 members of this family. Given the almost concurrent publication of a CryoEM structure of the same receptor in the active state, we propose this protocol as an in silico complement to the growing field of ORs structure determination.

Machine Learning-Based Modeling of Olfactory Receptors in Their Inactive State: Human OR51E2 as a Case Study / M. Alfonso-Prieto, R. Capelli. - In: JOURNAL OF CHEMICAL INFORMATION AND MODELING. - ISSN 1549-9596. - 63:10(2023), pp. 2911-2917. [10.1021/acs.jcim.3c00380]

Machine Learning-Based Modeling of Olfactory Receptors in Their Inactive State: Human OR51E2 as a Case Study

R. Capelli
Co-primo
2023

Abstract

Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here, we have developed a protocol that performs a series of molecular dynamics simulations from a set of structures predicted de novo by recent machine learning algorithms and apply it to a well-studied receptor, the human OR51E2. Our study demonstrates the need for simulations to refine and validate such models. Furthermore, we demonstrate the need for the sodium ion at a binding site near D2.50 and E3.39 to stabilize the inactive state of the receptor. Considering the conservation of these two acidic residues across human ORs, we surmise this requirement also applies to the other similar to 400 members of this family. Given the almost concurrent publication of a CryoEM structure of the same receptor in the active state, we propose this protocol as an in silico complement to the growing field of ORs structure determination.
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore CHIM/02 - Chimica Fisica
Settore BIO/10 - Biochimica
2023
5-mag-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
acs.jcim.3c00380-3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/980029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact