Dihydrobenzofurans and indolines are important constituents of pharmaceuticals. Herein, we describe a novel strategy for their construction in which the aromatic ring is created de novo through an inverse-electron demand Diels–Alder reaction and cheletropic extrusion sequence of a 2-halothiophene-1,1-dioxide with an enol ether/enamide, followed by aromatization. Unusually, the aromatization process proved to be highly challenging, but it was discovered that treatment of the halocyclohexadienes with a base effected an α-elimination–aromatization reaction. Mechanistic investigation of this step using deuterium-labeling studies indicated the intermediacy of a carbene which undergoes a 1,2-hydrogen shift and subsequent aromatization. The methodology was applied to a modular and stereoselective total synthesis of the antiplatelet drug beraprost in only 8 steps from a key enal-lactone. This lactone provided the core of beraprost to which both its sidechains could be appended through a 1,4-conjugate addition process (lower ω-sidechain), followed by de novo construction of beraprost’s dihydrobenzofuran (upper α-sidechain) using our newly developed methodology. Additionally, we have demonstrated the breadth of our newly established protocol in the synthesis of functionalized indolines, which occurred with high levels of regiocontrol. According to density-functional theory (DFT) calculations, the high selectivity originates from attractive London dispersion interactions in the TS of the Diels–Alder reaction.
De Novo Synthesis of Dihydrobenzofurans and Indolines and Its Application to a Modular, Asymmetric Synthesis of Beraprost / Z. Wang, S.H. Bennett, B. Kicin, C. Jing, J.A. Pradeilles, K. Thai, J.R. Smith, P. David Bacoş, V. Fasano, C.M. Saunders, V.K. Aggarwal. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - (2023), pp. 1-9. [Epub ahead of print] [10.1021/jacs.3c04582]
De Novo Synthesis of Dihydrobenzofurans and Indolines and Its Application to a Modular, Asymmetric Synthesis of Beraprost
V. Fasano;
2023
Abstract
Dihydrobenzofurans and indolines are important constituents of pharmaceuticals. Herein, we describe a novel strategy for their construction in which the aromatic ring is created de novo through an inverse-electron demand Diels–Alder reaction and cheletropic extrusion sequence of a 2-halothiophene-1,1-dioxide with an enol ether/enamide, followed by aromatization. Unusually, the aromatization process proved to be highly challenging, but it was discovered that treatment of the halocyclohexadienes with a base effected an α-elimination–aromatization reaction. Mechanistic investigation of this step using deuterium-labeling studies indicated the intermediacy of a carbene which undergoes a 1,2-hydrogen shift and subsequent aromatization. The methodology was applied to a modular and stereoselective total synthesis of the antiplatelet drug beraprost in only 8 steps from a key enal-lactone. This lactone provided the core of beraprost to which both its sidechains could be appended through a 1,4-conjugate addition process (lower ω-sidechain), followed by de novo construction of beraprost’s dihydrobenzofuran (upper α-sidechain) using our newly developed methodology. Additionally, we have demonstrated the breadth of our newly established protocol in the synthesis of functionalized indolines, which occurred with high levels of regiocontrol. According to density-functional theory (DFT) calculations, the high selectivity originates from attractive London dispersion interactions in the TS of the Diels–Alder reaction.File | Dimensione | Formato | |
---|---|---|---|
jacs.3c04582.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.