Brown rot, caused by Monilinia spp., is one of the most important postharvest diseases of stone fruits worldwide. Brown rot resistance in peach is a polygenic trait controlled by multiple genes with a small effect. In this study, we assessed the feasibility of genomic prediction (GP) for brown rot resistance in peach using eight contrasting methods (GBLUP, rrBLUP, BayesA, BayesB, BayesC, Bayesian Ridge Regression, Bayesian Lasso and RKHS). A testing panel of 38 cultivars/advanced selections and 288 F1 individuals from 27 pedigree-related breeding families with 'Bolinha' and/or 'Contender' or almond source of resistance was phenotyped over six seasons (2015 to 2020). GP models outperformed MAS models under five-fold cross validation, and low to moderate predictive accuracy (PA) was achieved by fitting GP model for wounded (W) (0.092−0.449) and low PA for non-wounded (NW) disease severity index (0.129−0.295). An alternative cross validation approach using disease severity index recorded in lab to predict field disease incidence (FDI) in unphenotyped accessions revealed moderate correlation (0.548−0.553). Genomic predicted breeding value distinguished accessions with low FDI from those with high FDI. The results presented here demonstrated feasibility of incorporating GP in peach breeding.

Feasibility of genomic prediction for brown rot (Monilinia spp.) resistance in peach / W. Fu, C. da Silva Linge, J.M. Lawton, K. Gasic. - In: FRUIT RESEARCH. - ISSN 2769-4615. - 2:1(2022), pp. 1-12. [10.48130/FruRes-2022-0002]

Feasibility of genomic prediction for brown rot (Monilinia spp.) resistance in peach

C. da Silva Linge
Secondo
;
2022

Abstract

Brown rot, caused by Monilinia spp., is one of the most important postharvest diseases of stone fruits worldwide. Brown rot resistance in peach is a polygenic trait controlled by multiple genes with a small effect. In this study, we assessed the feasibility of genomic prediction (GP) for brown rot resistance in peach using eight contrasting methods (GBLUP, rrBLUP, BayesA, BayesB, BayesC, Bayesian Ridge Regression, Bayesian Lasso and RKHS). A testing panel of 38 cultivars/advanced selections and 288 F1 individuals from 27 pedigree-related breeding families with 'Bolinha' and/or 'Contender' or almond source of resistance was phenotyped over six seasons (2015 to 2020). GP models outperformed MAS models under five-fold cross validation, and low to moderate predictive accuracy (PA) was achieved by fitting GP model for wounded (W) (0.092−0.449) and low PA for non-wounded (NW) disease severity index (0.129−0.295). An alternative cross validation approach using disease severity index recorded in lab to predict field disease incidence (FDI) in unphenotyped accessions revealed moderate correlation (0.548−0.553). Genomic predicted breeding value distinguished accessions with low FDI from those with high FDI. The results presented here demonstrated feasibility of incorporating GP in peach breeding.
Genomic selection, Disease resistance, Breeding, Fruit tree;
Settore AGR/07 - Genetica Agraria
2022
24-gen-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Fu et al. 2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/974038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact