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Abstract
Brown rot, caused by Monilinia spp., is one of the most important postharvest diseases of stone fruits worldwide. Brown rot resistance in peach is

a polygenic trait controlled by multiple genes with a small effect. In this study, we assessed the feasibility of genomic prediction (GP) for brown

rot resistance in peach using eight contrasting methods (GBLUP, rrBLUP, BayesA, BayesB, BayesC, Bayesian Ridge Regression, Bayesian Lasso and

RKHS). A testing panel of 38 cultivars/advanced selections and 288 F1 individuals from 27 pedigree-related breeding families with 'Bolinha' and/or

'Contender' or almond source of resistance was phenotyped over six seasons (2015 to 2020). GP models outperformed MAS models under five-

fold cross validation, and low to moderate predictive accuracy (PA) was achieved by fitting GP model for wounded (W) (0.092−0.449) and low PA

for non-wounded (NW) disease severity index (0.129−0.295). An alternative cross validation approach using disease severity index recorded in lab

to predict field disease incidence (FDI) in unphenotyped accessions revealed moderate correlation (0.548−0.553). Genomic predicted breeding

value distinguished accessions with low FDI from those with high FDI. The results presented here demonstrated feasibility of incorporating GP in

peach breeding.
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INTRODUCTION

Peach  [Prunus  persica (L.)  Batsch],  belongs  to  the Prunus
genus  and  Rosaceae  family  and  is  the  third  most  produced
temperate  tree  fruit  species  behind  apple  and  pear[1] with  an
estimated  worldwide  production  of  over  25  million  metric
tons[2].

Peach breeders are constantly developing cultivars with high
horticultural  and  fruit  quality  traits  along  with  improved
disease  resistance[3,4].  However,  like  in  other  woody  perennial
crops,  breeding  of  peach  is  not  an  easy  task.  Due  to  the  long
juvenile  stage  and  large  plant  size,  peach  breeding  requires
significant  time  and  labor  input[5].  Developing  peach  cultivars
with  disease  resistance  is  particularly  challenging.  Sources  of
disease resistance are often present in exotic germplasm (land-
races, wild relatives, and unadapted material) with unfavorable
horticultural  traits.  Thus,  introgression  of  resistance  alleles  to
elite  cultivars  can  take  many  generations,  especially  for  those
disease  resistance  traits  that  are  polygenic  in  nature  and
controlled  by  many  genes  with  small  effect[3,4,6−8].  The  use  of
predictive  DNA  information  provides  tools  to  make  precise
selection  in  different  breeding  stages  (pre-breeding,  parental
and  seedling  selection,  and  advanced  selection),  which  can
accelerate  genetic  improvement  and  increase  breeding
efficiency[7,9].

DNA-informed breeding is becoming conventional for peach
and  other  Rosaceae  crops[7].  Using  trait  associated  markers  or
tagging genes, breeders can select desirable individuals early in
the  development  stage,  and  this  strategy  is  called  marker-
assisted selection (MAS)[10,11]. In peach, markers associated with
fruit  quality  traits[12] and  disease  resistance[13] have  been

identified  and  applied  in  breeding.  However,  MAS  is  suitable
only for monogenic traits or simple quantitative traits which are
controlled  by  small  numbers  of  genes  with  relatively  large
effects[14].  Many  complex  traits[6,8] are  controlled  by  multiple
QTLs  with  relatively  small  effects  and  are  highly  sensitive  to
environmental  conditions.  Although  the  combined  effects  of
those  QTLs  could  be  significant,  the  individual  effects  are
difficult to capture, thus under this scenario, MAS would not be
effective[14].  To  overcome  the  limitation  of  MAS,  genomic
selection (GS) was proposed as an alternative approach. Instead
of  using  only  the  markers  with  large  effect,  GS  accounts  for
effects  of  whole  genome  markers  simultaneously  to  predict
genomic  estimated  breeding  value  (GEBV)  for  each  individual,
and  can  potentially  explain  more  genetic  variance  than  MAS,
therefore  is  more  appropriate  for  handling  complicated  traits
with low heritability[5,14]. In Rosaceae crops, genomic prediction
models  have  been  successfully  applied  to  different  traits,  for
example,  fruit  texture[15],  fruit  firmness,  soluble  solids
concentration  and  weighted  cortical  intensity[16] in  apple;
harvest  time,  fruit  weight,  flesh  firmness,  sugar  content  and
heart  rot  in  pear[17];  fruit  weight,  yield  and  soluble  solids
content  in  strawberry[18];  and  fruit  weight,  sugar  content  and
titratable acidity in peach[19].

A  number  of  genomic  prediction  (GP)  models  have  been
developed as tools to facilitate GS. Different statistical methods
have  been  implemented  to  solve  the  problem  of  limited
number  of  phenotypic  data  and  large  number  of  genotypic
data[20].  These  models  differ  in  their  assumptions  of  the
underlying  genetic  models.  GBLUP[21,22] and  rrBLUP[23] assume
all  markers  have  equal  variances,  thus  shrinkage  is  performed
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equally to all marker effects. Bayesian models including BayesA,
BayesB,  BayesC[23,24],  Bayesian  Ridge  Regression  (BRR),  and
Bayesian  Lasso  (BL)[25] differ  by  applying  different  priors  on
marker variances[26]. Compared to GBLUP and rrBLUP, Bayesian
models  are  more  flexible  with  respect  to  genetic  architecture,
and  better  suited  for  traits  controlled  by  QTLs  with  major
effects[27].

Peach  breeding  germplasm  has  very  narrow  genetic  back-
ground  as  the  same  group  of  cultivars  can  be  found  in  the
pedigrees  of  most  of  the  accessions/cultivars  5-6  generations
back[28,29].  Presently,  Brazilian  landrace  cultivar  Bolinha  and
peach  cultivar  Contender[30],  released  by  North  Carolina  State
University's  peach  breeding  program,  are  the  only  confirmed
sources  of  tolerance  or  resistance  to  brown  rot  in  peach.  In
addition to the 'Bolinha'[31], University of California Davis' peach
breeding  program  is  also  using  almond  as  a  source  of  brown
rot resistance[32,33]. Previous studies have shown that brown rot
resistance  in  peach  is  a  complex  polygenic  trait  with  low
heritability,  and  limited  phenotypic  variance  explained  by  the
detected QTLs/significant SNPs[6,30,33,34]. Under this scenario, GS
is  suggested  as  a  more  promising  approach  in  comparison  to
MAS.  The objective of  this  study was to evaluate the potential
of  applying GS for  brown rot  resistance in peach.  The focus of
this study was to evaluate different GP models using materials
with  different  sources  of  resistance.  To  obtain  reliable  results,
different cross validation schemes were applied to the analysis,
as  well  as  empirical  cross  validation  using  unphenotyped
material.  To our knowledge,  this  is  the first  GP study of  brown
rot resistance in peach, and the results presented here provide
an important foundation for applying GS in peach. 

RESULTS
 

Phenotypic analysis of fruit response to brown rot
infection

A total of 326 pedigree-related accessions (Supplemental Fig.
S1)  from  the  Clemson  University's  peach  breeding  program
were  evaluated  for  fruit  response  to Monilinia  fructicola
infection.  Parallel  inoculation  to  non-wounded  (NW)  and
wounded  (W)  fruits  was  applied  to  investigate  skin  and  flesh
resistance to brown rot, respectively. Brown rot disease severity
index  (DSI)  in  NW  and  W  peach  fruit,  analyzed  in  six  seasons
(2015  to  2020)  (Supplemental  Table  S1),  ranged  from  0−27.67
and  0.25−42.54  respectively,  with  the  highest  mean  DSI
observed in 2017 (5.92 for NW and 31.64 for W) (Supplemental
Table S2).

NW and W DSI exhibited low (0.261) to moderate correlation
(0.648)  (p <  0.01)  within  the  same  year,  except  for  2019
(Supplemental Table S3), with the highest correlation observed
in  2016  (r =  0.648).  Considering  the  same  treatment  across
different seasons, significant correlations (p < 0.01) for NW DSI
were  observed  between  2015  and  2016  (r =  0.349),  as  well  as
2019  and  2020  (r =  0.474);  while  W  DSI  had  significant
correlations (p < 0.05) between 2015 and 2016 (r = 0.507); 2015
and 2020 (r = 0.481); 2018 and 2019 (r = 0.397); 2019 and 2020
(r = 0.674).

Three different datasets were generated based on the source
of  resistance:  the  Bolinha  dataset  including  122  F1  progeny
from  nine  breeding  families  with  'Bolinha'  contributing  the
source  of  resistance  (mainly  phenotyped  in  2015,  2016  and
2019); the Contender dataset including 81 F1 progeny from 14

breeding  families  with  'Contender'  contributing  the  source  of
resistance  (mainly  phenotyped  in  2017  and  2018);  and  the
Combined dataset including all accessions in the testing panel.
In order to eliminate the year effect and deal with missing data,
best  linear  unbiased  predictions  (BLUPs)  of  NW  and  W  DSI  for
each  accession  across  all  seasons  were  estimated  and  used  as
phenotype  variables  in  the  subsequent  analysis  of  GWAS  and
GP.  BLUPs  varied  from  0.26−9.04  and  20.38−30.69  for  NW
(mean = 2.38) and W (mean = 25.93) DSI, respectively (Supple-
mental  Table  S2).  As  expected,  BLUPs  were  significantly  (p <
0.05) associated with observed DSI in each year (Supplemental
Table  S3)  and  were  used  in  the  subsequent  GWAS  and  GP
analyses.

NW  DSI  BLUPs  exhibited  non-normal  distribution  (Shapiro-
Wilk  test p <  0.001)  skewed  to  low  DSI  for  all  datasets.  In
contrast,  W  DSI  BLUPs  showed  normal  distribution  in  all  three
datasets  (Bolinha, p =  0.325;  Contender, p =  0.806;  Combined,
p = 0.776) (Fig. 1). Estimated broad-sense heritability (H2) of the
datasets ranged from 0.09 (Contender NW DSI) to 0.47 (Bolinha
W DSI) (Supplemental Table S4). Overall, the Contender dataset
had  the  lowest  and  the  Bolinha  dataset  had  the  highest
estimates of H2 for both NW and W DSI. The Combined dataset
had similar but lower estimates of H2 than the Bolinha dataset. 

Genetic relationship and population structure in the
testing panel

A total of 256 accessions, with genotyping rate > 90%, were
included  in  the  testing  panel  and  used  in  GWAS  and  GP
analyses  (Supplemental  Table  S1).  Out  of  16,038  SNPs,  9,067
were polymorphic in the testing panel. SNP quality control was
performed  separately  for  each  dataset,  and  SNPs  with  >  10%
missing  genotype  and  MAF  <  0.05  were  excluded  from  the
subsequent  analyses.  The  final  number  of  SNPs  included  in
Bolinha,  Contender  and  Combined  datasets  were  8,014,  8,014
and  8,442,  respectively,  with  7,314  SNPs  shared  between  all
three datasets (Fig. 2).

 
Fig.  1    Disease  severity  index  (DSI)  distribution  in  the  three
datasets (Bolinha, Contender, Combined).
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Kinship  matrix  suggested  two  main  clusters  in  the  testing
panel, with breeding families derived from only the 'Contender'
source  of  resistance  grouping  in  one  and  individuals  with  the
'Bolinha'  sources  of  resistance  grouping  in  another  cluster
(Fig.  3a).  The principal  component  analysis  (PCA)  also  resulted
in two clusters, separating individuals based on their sources of
resistance (Supplemental Fig. S2).

Population structure analysis of each dataset, using Bayesian
clustering,  suggested  number  of  populations  (K)  of  8  for  the

Bolinha  dataset,  5  for  the  Contender  dataset  and  13  for  the
Combined  dataset  (Fig.  3b; Supplemental  Fig.  S3).  Q  matrices
obtained  from  population  structure  analysis  were  used  in
subsequent GWAS analyses. 

Genome wide association study
GWAS  was  carried  out  separately  for M.  fructicola infection

responses in peach flesh (W) and skin (NW) in the three datasets
(Bolinha,  Contender  and  Combined)  (Supplemental  Table  S5).
Fixed  and  random  model  Circulating  Probability  Unification

a b

 
Fig.  2    Number  of  SNPs  included  in  genome  wide  association  study  and  genomic  prediction  analysis  for  the  three  datasets  (Bolinha,
Contender and Combined). (a) Number of SNPs per chromosome. (b) Venn diagram for SNPs shared by all three datasets.

a b

 
Fig.  3    (a)  Heat  map  of  kinship  matrix  of  the  testing  panel  and,  (b)  population  structure  of  the  three  datasets  (Bolinha,  Contender  and
Combined).
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(FarmCPU)  analysis  revealed  a  total  of  11  significant  (p <  0.01
with Bonferroni correction) marker-trait associations for skin (6)
and  flesh  (5)  resistance  to  brown  rot,  spanning  all  chromo-
somes (Chr) except Chr 1 (Supplemental Table S5; Supplemen-
tal Fig. S4). Phenotypic variance explained (R2) by the detected
markers  ranged  from  0.34%  to  15.8%.  Due  to  Bonferroni
correction  often  being  too  conservative  for  detecting  impor-
tant  loci,  we  considered  also  an  exploratory  less  stringent
significance  threshold  of p <  0.0001.  An  additional  list  of  24
markers  on  all  chromosomes  were  identified,  with  13  of  them
associated with NW DSI, while 11 of them were associated with
W  DSI.  For  NW  DSI,  the  markers  detected  with  lowest p-value
were Peach_AO_0422949 (p = 8.04E-10, R2 = 7.64%), SNP_IGA_
261410  (p =  1.57E-06,  R2 =  15.80%)  and  Pp05_12552668  (p =
8.19E-07,  R2 =  4.28%),  detected in  the  Bolinha,  Contender  and
Combined  datasets,  respectively.  Markers  SNP_IGA_249273  (p
= 1.40E-06, R2 = 4.93%), Peach_AO_0771463 (p = 1.31E-09, R2 =
12.7%) and Peach_AO_0692414 (p = 2.97E-07, R2 = 3.27%) were
most  significantly  associated  with  W  DSI,  in  the  Bolinha,
Contender and Combined dataset, respectively. One marker on
Chr  4  (Peach_AO_0446589)  was  associated  with  both  W  and
NW  DSI  in  the  Bolinha  dataset.  No  common  significant  SNPs
were detected among the three datasets. However, a region on
Chr  4,  spanning  10,582,092  to  11,108,143  bp,  containing  four
markers detected in the three datasets was observed; with one
marker  (Peach_AO_0446589,)  associated  with  both  skin  (R2 =
6.63%) and flesh (R2 = 4.14%) resistance in the Bolinha dataset,
and  one  (SNP_IGA_409901,  R2 =  11.37%)  and  two  markers
(Peach_AO_0446892, R2 = 3.82%; SNP_IGA_434655, R2 = 3.54%)
associated  with  skin  or  flesh  resistance  in  the  Contender  and
the  Combined  datasets,  respectively.  All  markers  detected
under  the  exploratory  threshold  were  included  in  the  further
analysis of fitting marker-assisted selection (MAS) model. 

Genomic prediction
Predictive accuracy (PA) of GP and MAS models, estimated by

five-fold  cross  validation  for  each  dataset,  were  low  to
moderate  for  GP  models,  and  low  for  MAS  model.  In  most  of
the  cases,  PA  of  GP  models  had  significantly  higher  PA  than
MAS  model  according  to  ANOVA  and  Tukey  test  (p <  0.05)
(Fig.  4; Supplemental  Table  S6).  When  predicting  NW  DSI,  the
highest  average  performance  was  achieved  in  the  Bolinha
dataset  (BayesB,  0.295  ±  0.059),  and  the  lowest  was  in  the
Contender dataset (GBLUP, 0.129 ± 0.065). Similarly, the highest
PA  for  W  DSI  was  also  observed  in  the  Bolinha  dataset  (RKHS,
0.457  ±  0.033),  and  the  lowest  in  the  Contender  dataset
(rrBLUP, –0.089 ± 0.081). The overall mean PA of all GP models
among  the  datasets  corresponded  to  the  ranking  of  H2

estimated  in  each  dataset  (Spearman's  rank  correlation, p <
0.01).  For  both  NW  and  W  DSI,  PA  exhibited  high  stability  in
both  the  Bolinha  and  Combined  datasets,  with  Combined
dataset  having  the  narrowest  range  (0.138–0.168  in  NW_DSI
and 0.122–0.200 in W_DSI).  The PA obtained in the Contender
dataset  was  less  stable  exhibiting  wide  range  (NW_DSI,
0.271–0.450;  W_DSI,  0.348–0.550).  Comparison  of  the  PA  of
different  GP  models  for  the  same  treatment  and  dataset
revealed  significant  differences,  except  for  NW  DSI  in  the
Combined  dataset.  Overall,  the  Bayesian  models  showed
similar  or  higher  PA  than  GBLUP  and  rrBLUP  in  all  datasets.
Among  the  Bayesian  models,  BL  showed  lower  PA  than  other
models.  For  both  NW  and  W  DSI,  BayesB  and  RKHS  models
showed  superior  or  same  PA  to  other  GP  models  tested.
Moreover, GBLUP and rrBLUP showed similar performance in all

datasets,  and  were  among  the  best  performed  models  for  W
DSI  in  the  Bolinha  dataset  and  NW  DSI  in  the  Combined
dataset.  However,  negative  PA  was  observed  for  W  DSI  in  the
Contender dataset with both GBLUP and rrBLUP models (Fig. 4).
The MAS model revealed significantly lower PA compared to all
GP models in all datasets (Fig. 4), thus, it was excluded from the
following analyses.

To  further  evaluate  GP  models  performance,  we  applied
leave-one-family-out (LOF) cross validation for the Bolinha and
Contender datasets. Due the significantly lower PA observed in
the  MAS  model  in  the  five-fold  cross  validation,  the  LOF
validation  strategy  was  not  applied  in  this  model.  Low  PA
obtained from LOF ranged from −0.167 (Contender,  GBLUP, W
DSI)  to  0.344  (Bolinha,  RKHS,  W  DSI)  (Fig.  5).  The  LOF  cross
validation  strategy  was  not  applied  in  the  Combined  dataset,
because  it  contains  the  breeding  families  from  Bolinha  and
Contender  datasets  as  well  as  a  group  of  cultivars/advanced
selections  and  breeding  families  with  almond  background.
Considering  the  same  GP  model  in  different  datasets,  the  GP
models were better fitted when applied to the Bolinha dataset
for  W  DSI,  however,  when  predicting  NW  DSI  GP  models

 
Fig. 4    Predictive accuracy for five-fold cross validation of several
genomic  prediction  models  and  marker-assisted  selection  (MAS)
model  in  three  datasets  (Bolinha,  Contender  and  Combined)  for
wounded (W) and non-wounded (NW) disease severity index (DSI).
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showed  higher  PA  in  the  Contender  dataset  than  the  Bolinha
dataset.

In  addition  to  LOF  cross  validation,  we  tested  the  perfor-
mance  of  GP  models  using  an  across-population  cross  valida-
tion strategy, in which individuals with only Bolinha or Conten-
der sources of resistance were used as a training population to
predict  the rest  of  the accessions  in  the testing panel.  For  NW
DSI, when using the 'Bolinha' derived population as the training
population, the observed PAs were higher than when using the
'Contender'  derived  population  as  the  training  population.
Overall,  PAs  achieved  by  predicting  W  DSI  were  low  in  both
datasets,  and  when  the  'Contender'  derived  population  was
used as the training dataset, negative PAs were observed for all
GP models (Table 1).

Lastly, we tested GP models in a practical cross validation, in
which individuals in the testing panel were used as the training
population  to  predict  brown  rot  DSI  for  the  validation  panel
(Supplemental Table S7). Spearman's rank correlation between
the GEBV and field disease incidence (FDI) BLUP was estimated.
Since  BLUPs  for  NW  FDI  in  2019  and  2020  showed  low
variability,  we  only  included  W  FDI  BLUPs  in  GP  analysis.  High
correlations  (p <  0.01)  among  GEBVs  between  different  GP
models  was  observed,  as  well  as  moderate  correlations
between GEBVs to W FDI BLUPs (Table 2).

To  further  validate  our  results,  we  selected  two  groups  of
individuals  in  the  validating  panel:  low  FDI  group  with  FDI
lower  than  0.1  in  both  seasons  (2019  and  2020)  and  high  FDI
group  with  FDI  higher  than  0.7  in  both  seasons  (2019  and
2020).  Independent  Samples  t-Test  revealed  significant  differ-
ences (p < 0.002) of the mean GEBVs between low and high FDI
groups (Fig. 6). 

Table 1.    Predictive accuracy of genomic prediction models for wounded
(W)  and  non-wounded  (NW)  disease  severity  (DSI)  traits  when  using  the
Bolinha or Contender datasets as the training population.

Trait Training set Validation set Model Predictive accuracy

NW DSI Bolinha Contender Bayes A 0.154
Bayes B 0.166
Bayes C 0.147

Bayesian LASSO 0.156
Bayesian Ridge 0.156

GBLUP 0.158
RKHS 0.128

rrBLUP 0.154

Other Bayes A 0.279
Bayes B 0.292
Bayes C 0.307

Bayesian LASSO 0.279
Bayesian Ridge 0.289

GBLUP 0.293
RKHS 0.301

rrBLUP 0.293

Contender Bolinha Bayes A 0.06
Bayes B 0.057
Bayes C 0.057

Bayesian LASSO 0.079
Bayesian Ridge 0.066

GBLUP 0.063
RKHS 0.052

rrBLUP 0.06

Other Bayes A −0.129
Bayes B −0.139
Bayes C −0.107

Bayesian LASSO 0.012
Bayesian Ridge −0.117

GBLUP −0.095
RKHS −0.132

rrBLUP −0.095

W DSI Bolinha Contender Bayes A 0.157
Bayes B 0.131
Bayes C 0.125

Bayesian LASSO 0.097
Bayesian Ridge 0.121

GBLUP 0.147
RKHS 0.147

rrBLUP 0.13

Other Bayes A 0.121
Bayes B 0.104
Bayes C 0.105

Bayesian LASSO 0.11
Bayesian Ridge 0.097

GBLUP 0.106
RKHS 0.116

rrBLUP 0.106

Contender Bolinha Bayes A −0.133
Bayes B −0.15
Bayes C −0.133

Bayesian LASSO −0.132
Bayesian Ridge −0.147

GBLUP −0.096
RKHS −0.137

rrBLUP −0.103

Other Bayes A −0.169
Bayes B −0.139
Bayes C −0.177

Bayesian LASSO −0.192
Bayesian Ridge −0.139

GBLUP −0.219
RKHS −0.142

rrBLUP −0.218

 
Fig.  5    Predictive  accuracy  for  leave-one-family-out  cross-
validation  of  several  genomic  prediction  models  in  the  Bolinha
and Contender datasets for wounded (W) and non-wounded (NW)
disease severity index (DSI).
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Table 2.    Spearman's correlation between BLUP of field observed flesh disease incidence (W_FDI) and genomic estimated breeding value obtained from
genomic prediction models.

BLUP rrBLUP GBLUP BayesA BayesB BayesC BayesLasso BayesRidge RKHS

FDI_BLUP −
rrBLUP 0.550** −
GBLUP 0.549** 1.000** −
BayesA 0.548** 0.995** 0.995** −
BayesB 0.549** 0.998** 0.999** 0.991** −
BayesC 0.550** 0.998** 0.998** 0.998** 0.995** −
BayesLasso 0.537** 0.994** 0.994** 0.984** 0.997** 0.989** −
BayesRidge 0.553** 0.995** 0.994** 0.999** 0.990** 0.998** 0.982** −
RKHS 0.552** 0.991** 0.991** 0.994** 0.986** 0.994** 0.978** 0.994** −

** − Correlation detected at the significant level of 0.01.

 
Fig.  6    Comparison  of  mean  genomic  estimated  breeding  value  (GEBV)  between  individuals  with  low  and  high  field  observed  disease
incidence (FDI).
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DISCUSSION
 

Phenotypic variation for brown rot disease severity
index

Brown  rot  disease  severity  exhibited  similar  seasonal  varia-
tion.  Mean  DSI  of  material  with  the  'Contender'  source  of
resistance (31.64 for 2017; 30.05 for 2018) was higher than that
observed  in  accessions  with  the  'Bolinha'  source  of  resistance
(19.97  for  2015;  20.37  for  2016;  29.36  for  2019)  (Supplemental
Table  S3),  confirming  'Bolinha'  as  an  important  brown  rot
resistance donor[31]. However, NW DSI observed in the 'Bolinha'
derived  population  in  2019  was  much  less  variable,  as  well  as
the  distribution  of  W  treatment  shifted  to  higher  DSI,  than
those  observed  in  2015−2016  seasons.  Although,  significant
low to moderate correlations were reported for NW and W DSIs
between  2015  and  2016  seasons,  no  significant  correlations
were observed between 2019 and the other two datasets (2015
and 2016).  A low degree of correlation of brown rot resistance
across seasons along with strong seasonal effect on peach skin
and flesh responses to brown rot  infection were also reported
by  Baró‐Montel  et  al.[34] in  an  interspecific  almond  ×  peach
population. Given that in our study we applied disease assay in
a controlled lab environment with the same fruit ripening stage
and inoculum strength, a possible explanation of the observed
phenotypic  variation  might  be  due  to  the  field  environmental
influences  altering  phytochemical  compounds  and  physical
structure  of  peach  fruits.  Inconsistency  of  evaluation  across
years suggested multi-year assays are recommended to gather
reliable  results[35].  Despite  differences  in  phenotypic  response,
significant  low  (0.261,  2018)  to  moderate  (0.648,  2016)
correlations  were  observed  between  NW  and  W  treatments,
except  in  2019.  Similar  correlations  between  NW  and  W  DSI
within the same season were previously reported in peach[6,30],
suggesting  peach  skin  and  flesh  resistance  might  be  under
different genetic control.

H2 estimated  separately  for  both  treatments  and  each
dataset  (Supplemental  Table  S4),  was  low  for  NW  DSI  in  all
three datasets. However, H2 observed for W DSI was moderate
in  the  Bolinha  and  Combined  datasets,  and  low  in  the
Contender  dataset.  Different  levels  of  H2 between  NW  and  W
DSI  revealed  lower  phenotype  consistency  of  NW  DSI,
suggesting  seasonal  influence  might  have  a  higher  effect  on
skin  than  flesh  resistance.  Most  of  the  individuals  from  the
Contender  dataset  were  evaluated  only  in  2017  and  2018,
therefore  lack  of  correlation  of  the  two-year  observation
affected H2 in this dataset. Moderate H2 observed in Bolinha W
DSI  (0.57),  suggested  that  the  variance  of  the  trait  in  this
dataset  was  mainly  determined  by  genetic  factors.  The
estimated  H2 for  W  DSI  in  this  study  were  higher  than  those
reported by Fu et al.[6] but similar to those reported by Pacheco
et  al.[30] and  Dini  et  al.[36].  The  H2 of  the  trait  affects  the  GS
prediction  accuracy  in  simulation  studies[37].  Previous  studies
have also demonstrated that traits with higher heritability have
achieved higher PA[38].  However, the selection of the statistical
method is an important parameter in the performance of GS for
predicting low/moderate/high heritability traits[37,38]. 

Genome wide association study
GWAS  revealed  significant  SNPs  (p <  0.01  with  Bonferroni

correction)  associated with  skin  (NW_DSI;  6)  and flesh (W_DSI;
5)  resistance to brown rot.  Out of the six SNPs associated with
skin resistance, only one (Peach_AO_0422949; Chr 4, 4.09 Mbp)

detected in the Bolinha dataset was previously reported[6]. Five
markers detected under the exploratory threshold (0.0001, with
no Bonferroni correction) were located within the same genetic
region associated with skin or flesh resistance[6,30].  The SNP on
Chr 3 (9.80 Mbp) was identified in the vicinity of brown rot flesh
resistance  QTL  (FL_rd_2020)  reported  by  Pacheco  et  al.[30].  In
addition, four markers detected on Chr 1, 4 and 6 were close to
the  associated  signals  detected  by  Fu  et  al.[6].  Out  of  the  five
significantly  associated  SNPs  (p <  0.01  with  Bonferroni  correc-
tion)  with  W  DSI,  one  on  Chr  6  (30.69  Mbp)  was  previously
reported  as  reliable  QTN  in  a  GWAS  panel  of  26  cultivars  and
138  accessions  with  'Bolinha'  source  of  resistance[6].  Further-
more,  two  SNPs,  detected  on  Chr1  and  Chr  6  under  the
exploratory  threshold,  were  previously  associated  with  flesh
resistance  to  brown  rot.  The  location  of  the  SNP  detected  on
Chr  1  (26.62  Mbp),  matched  with  the  position  of  brown  rot
resistance  QTL  (QTL1.2)  reported  by  Martinéz-Garcia  et  al.[33]

using an interspecific F1 progeny derived from a cross between
peach  cultivar  Dr.  Davis  and  an  almond  ×  peach  F2BC2
introgression  line  F8,1–42.  The  SNP  detected  on  Chr  6  (26.62
Mbp),  was  located  within  the  haploblock  (H6_3)  associated
with peach flesh resistance to brown rot infection reported by
Fu et al[6] using material with the 'Bolinha' source of resistance.

Overall,  the  GWAS  results  showed  low  consistency  among
the  datasets.  The  possible  explanation  could  be  different
sources  of  brown  rot  resistance  and  different  set  of  markers
included  in  the  analysis.  Although  no  common  SNPs  were
detected  among  the  datasets,  a  group  of  markers  on  Chr  4,
located in  the  genomic  interval  spanned by  10.58–11.11  Mbp,
was  associated  with  either  NW  or  W  DSI  in  all  datasets
suggesting  an  important  role  of  this  genetic  region  in  brown
rot resistance. 

Genomic prediction
The main objective of this study was to test the feasibility of

using  GP  in  early  selection  for  brown  rot  resistance  in  peach.
Performance of MAS model to eight different GP models under
five-fold  cross  validation  revealed  that  the  majority  of  GP
models  had  higher  PA  than  MAS  model  in  all  three  datasets
(Fig. 4).  This observation is in agreement with previous studies
in crops such as winter rye[39] and citrus[40] in which higher PA
was  achieved  for  GP  than  MAS  when  predicting  traits
controlled  by  genes  with  small  effect.  Therefore,  the  results
obtained  in  this  study  suggested  that  GS  promises  a  better
outcome in improving brown rot resistance in peach than MAS.
Overall, PA of GP models obtained with the Contender dataset
were  relatively  lower  than that  obtained with  the  Bolinha  and
Combined datasets. A possible reason could be the lower H2. In
the Contender dataset, estimated H2 of both NW and W DSI was
almost  half  of  those  observed  in  the  other  two  datasets.  The
previous  study  in  maize[38] also  suggested  increase  in  PA  with
an  increase  in  broad-sense  heritability.  In  addition,  the
relatively small sample size of the Contender dataset could also
decrease PA.  The influence of  sample size  within  the analyzed
dataset  has  also  been  observed  in  GP  study  of  peach  fruit
quality  traits[19],  suggesting  performance  of  GP  can  be
improved by increasing sample size. Furthermore, we observed
decrease in PA variability with the increased sample size, which
agrees  with  the  observation  by  Biscarini  et  al.[19] that  larger
sample  size  is  an  important  factor  in  achieving  reliable  (less
variable) estimates of PA. Similar PA for NW DSI was achieved in
the Combined and Bolinha datasets. W DSI was best predicted
with  the  Bolinha  dataset,  indicating  that  a  higher  diversity  in
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training  population  might  not  be  useful  for  improving
predictive accuracy for both W and NW DSI.

Bayes B and RKHS models had constantly superior PA within
the same dataset, while BL had lower PA. The same level of PA
was  observed  using  either  GBLUP  and  rrBLUP,  which  agreed
with Habier et al.[22] that GBLUP and rrBLUP are fundamentally
equivalent.  Predictive  accuracy  of  GBLUP  and  rrBLUP  was
among the highest when predicting NW and W DSI in both the
Bolinha  and  Combined  datasets,  however,  it  was  poor  in  the
Contender  dataset.  PA  of  both  GBLUP  and  rrBLUP  obtained
with  the  Contender  dataset  was  negative  and  might  be
explained  by  the  systematic  bias[41] when  calculating  Pearson
correlation  coefficient.  Different  performance  for  GP  models
can be explained by genetic architecture of the evaluated traits.
GBLUP[21] and rrBLUP[23] assume equal variance for the effect of
all  loci,  thus  are  more  suitable  for  traits  influenced  by  large
numbers of genes with minor effects. Both BayesB and BayesC
have  strong  shrinkage  towards  marker  effects  and  are  better
suited  for  traits  controlled  by  a  few  QTLs  with  large  effect.
BayesA  has  a  weaker  shrinkage  degree  than  BayesB  and
BayesC,  thus  can  be  widely  adaptable[23,24].  RKHS  method
performs non-linear  regression in  high-dimensional  space  and
might  be  able  to  capture  non-additive  genetic  effects[42] and
has shown better results than other GP models[43−45]. Although
the  performance  of  GP  models  using  the  Bolinha  and
Contender  datasets  were  statistically  different,  the  observed
differences were small. Thus, both GBLUP and rrBLUP would be
good choices as  they require lower computational  time.  Over-
all,  five-fold cross  validation suggested GP models  are feasible
for GP for brown rot resistance in peach.

We  further  evaluated  GP  models  using  LOF  cross  validation
and an independent cross validation method using the Bolinha
and Contender  datasets  as  a  training population separately  to
predict the rest of accessions in the testing panel. The LOF and
independent  cross  validation  are  suggested  to  more  realis-
tically  resemble  how predictions  would perform in  a  breeding
program  than  five-fold  cross  validation.  For  LOF  cross  valida-
tion, predictive ability of all GP models decreased compared to
five-fold  cross  validation.  Although  under  this  scenario,
relatedness between training and testing population was close,
we did not observe predictive accuracy improvement as seen in
previous  studies[15,46].  One  possible  explanation  might  be  due
to  less  common  QTNs  shared  by  the  breeding  families.  The
choice  of  the  training  populations,  with  either  the  'Bolinha'  or
'Contender' resistance, was influenced by the pedigree connec-
tions among the germplasm used in the study,  and our desire
to  evaluate  feasibility  of  using  material  with  one  source  of
resistance  to  predict  brown  rot  DSI  in  the  rest  of  the
germplasm.  The  source  of  resistance  in  our  study  is  either
'Bolihna'  or  2nd generation  descendant  of  'Bolinha',  with  the
cultivar  O'Henry  in  the  pedigree,  versus  'Contender'  and
almond source of resistance from UC Davis' breeding program.
Individuals  from  different  breeding  families  were  not  always
half-sibs,  for  example,  in  the  Bolinha  dataset  some  of  the
breeding  families  were  direct  descendants  of  'Bolinha',  while
others  had  'Bolinha'  descendant  ('BY00P6346U'),  two  genera-
tions  removed  from  'Bolinha'  as  a  parent.  Therefore,  although
the relatedness within the population is high, there is a chance
that  unique  alleles  of  effective  QTLs  are  present  in  each
breeding  family  for  which  we  do  not  have  evidence  of  the
brown rot resistance. Also, the size of our dataset was small, as

numbers of  individuals  from each breeding family varied from
1−29  (Supplemental  Table  S1),  which  might  have  caused  bias
when predicting the models, and suggests the need to increase
the  size  of  the  dataset  included  in  this  analysis.  Independent
cross  validation  using  the  Bolinha  and  Contender  datasets
revealed  low  predictive  accuracy  in  all  tested  models.  Such
decreases  in  predictive  accuracy  of  GP  models  has  also  been
observed in wheat[47], and might be explained by the relatively
lower  genetic  relationship  between  training  and  testing
populations,  small  training  set  and/  or  G  ×  E  interaction.  Even
though  we  applied  disease  assay  in  lab  to  minimize  the
environmental  effect,  and  BLUPs  were  estimated  and  used  as
NW  and  W  DSI  in  GP,  disease  incidence  data  from  accessions
included in the Bolinha and Contender datasets were collected
in  different  seasons  thus  environmental  effects  might  be
confounded in the BLUP adjusted means.

Lastly,  a  practical  cross  validation  was  applied  to  all  GP
models. In this cross validation strategy, all individuals from the
testing  panel  were  used  as  a  training  population  to  predict
unphenotyped  validation  panel.  High  correlation  of  GEBVs
across  different  GP  models  was  observed,  as  was  previously
suggested[48].  Although  different  phenotyping  protocols  were
used  in  training  and  validation  panels,  we  found  GEBVs  pre-
dicted  by  DSI  obtained  from  lab  disease  assays  to  be  mode-
rately correlated (p < 0.01) with disease incidences observed in
field,  indicating  ability  of  lab  assays  to  predict  field  perform-
ance (Table 2). Comparison of GEBV means between low (FDI <
0.1) and high FDI groups (FDI > 0.7), revealed significantly lower
GEBVs for accessions in low FDI group (Fig. 6), indicating ability
of  GP  models  applied  in  our  study  to  distinguish  between
brown rot tolerant and susceptible genotypes. 

CONCLUSIONS

Brown rot resistance in peach is a complex trait controlled by
multiple genes with minor effects which complicates breeding.
This  is  the  first  report  supporting  GP  as  a  tool  in  breeding  for
disease  resistance  in  peach,  as  GP  models  outperformed  the
MAS  model.  Moderate  correlations  between  GEBVs  and
observed  field  disease  incidence,  reported  in  this  study,  are
establishing  trust  in  using  data  obtained  in  lab  assays  for
predicting field performance. In addition, significant differences
among  GEBVs  between  accessions  exhibiting  low  and  high
brown  rot  field  resistance  further  support  using  GP  in  early
selection  for  brown  rot  resistance.  With  the  three  known
sources  of  resistance  included  in  this  study,  we  have  a
comprehensive germplasm that can be used as a reference for
any  peach  breeding  program  in  North  America  and  Europe.
This  research  establishes  a  foundation  for  using  genomic
prediction  of  breeding  values  to  further  increase  genetic  gain
in  breeding  for  complex  traits  such  as  brown  rot  resistance  in
peach. 

MATERIALS AND METHODS
 

Plant material and phenotypic data collection
A  testing  panel  comprised  of  38  cultivars/advanced  selec-

tions and 288 F1 individuals from 27 pedigree-related breeding
families  was  included  in  the  study  (Supplemental  Table  S1;
Supplemental  Fig.  S1).  Among  the  27  F1 breeding  families,
eight  were  derived  from  the  'Bolinha'  source  of  resistance,  13
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from  the  'Contender'  source  of  resistance,  three  had  both  the
'Bolinha'  and  'Contender'  sources  of  resistance,  and  three
families had almond background. In addition, an F2 population
of  114  individuals  from  selfing  of  an  advanced  selection
'BY00P6346u'  ('Bolinha'  descendant)  was  used  as  a  validation
panel  (Supplemental  Table  S7).  All  plant  material  was
maintained at Clemson University Musser Fruit Research Center
under  standard  commercial  management  practices[6],  except
the  material  used  in  the  validating  panel  was  grown  with  the
absence of fungicides. 

Phenotypic data collection
Fruit responses to M. fructicola infection in the testing panel

were  evaluated  over  six  years  (2015  to  2020).  Accessions  with
the  'Bolinha'  source  of  resistance  were  mainly  evaluated  in
2015, 2016 and 2019, accessions with the 'Contender' source of
resistance  were  mainly  evaluated  in  2017  and  2018.  Breeding
families  with  both  'Bolinha'  and  'Contender'  sources  of
resistance were evaluated annually from 2015 to 2019. In 2020,
accessions with almond source of resistance and 32 accessions
with  'Bolinha'  and/or  'Contender'  source  of  resistance  were
evaluated (Supplemental  Table  S1).  Brown rot  disease severity
index  (DSI)  for  wounded  (W)  and  non-wounded  (NW)  peach
fruit was recorded using the phenotyping strategy described in
Fu  et  al.[6,49].  Descriptive  analysis  of  the  phenotypic  data  was
performed  with  SPSS  Statistics  v.  27  (IBM®).  To  eliminate  the
year  effect,  mean  W  and  NW  DSI  were  estimated  by  a  mixing
linear  model  (MLM)  using  R  package  'lme4'[50] with  year
selected as a random effect:

Yi j = µ+gi+ y j+gyi j+ε

in which, Yij is  the trait  of interest, µ is  the overall  mean, gi is  the
genetic effect of ith genotype, yj is  the effect of the jth year,  and
gyij as the interaction effect of ith genotype with jth year, ɛ is the
residual  of  the  model.  Best  linear  unbiased  predictions  (BLUP)
obtained  from  the  MLM  were  used  for  subsequent  analysis  in
GWAS and genomic prediction analyses. As some accessions were
phenotyped  in  different  seasons,  we  used  an ad  hoc method
proposed by Holland et al.[51] to calculate H2 using the following
equation.

H2 =
σ2

g

σ2
g+
σ2

gy

n
+
σ2
ε

nr
σ2

g σ2
gywhere  is  the  genotype  variance,  is  the  measure  of

variability  attribute  to  accession  ×  year  interaction, n is  the
harmonic mean of years in the experiment and r as the replicates
within each year (in our case r = 1).

Fruit  responses  to M.  fructicola natural  infection  in  the
validating  panel  were  evaluated  in  2019  and  2020.  For  each
available  accession  from  the  validating  panel,  at  least  20
unblemished fruits were harvested at the commercial ripening
stage  and  incubated  in  the  dark  under  humid  conditions  at
room  temperature  (22  ±  1  °C).  Brown  rot  disease  incidence
(proportion  of  fruit  with  symptoms)  was  recorded  after  seven
days of incubation. 

Genotyping
All  accessions  were  genotyped  with  newly  developed  9+9K

peach  SNP  array[52],  and  SNP  genotypes  quality  control  was
applied  following  the  method  described  in  Fu  et  al.[6].  For
further  analysis,  SNP  genotypes  was  converted  to  1  (AA
homozygotes), 0 (AB heterozygotes) and −1 (BB homozygotes). 

Population structure and kinship analysis
To  estimate  the  genetic  structure  of  the  testing  panel,  a

Bayesian  clustering  method  was  applied  in  fastSTRUCTURE[53].
Clusters ranging from 2 to 20 were tested by the default prior,
each K was repeated 20 times and the most probable number
of K was estimated considering the chooseK.py script and plo-
tting  out  the  average  marginal  likelihood  using  StructureSe-
lector[54]. Results of all replicates of each K cluster were aligned
and  summarized  using  CLUMPP[55],  and  the  estimated  admix-
ture  proportions  of  each  genotype  were  visualized  using
DISTRUCT  plots[56].  Kinship  matrix  of  the  testing  panel  was
estimated  using  the  VanRaden  method[21] and  visualized
through  a  heat  map  in  GAPIT  version  3[57].  PCA  analysis  was
performed using Tassel[58], the first three principal components
were plotted in R using Scatterplot3D R package[59]. 

Genome wide association study
Genome  wide  association  study  (GWAS)  was  conducted

using FarmCPU[58] in R package FarmCPU. Q matrices obtained
from  fastSTRUCTURE  were  incorporated  as  covariates  in  the
association  test  model.  Since  the  default p-value  (0.01)  with
Bonferroni  correction  of  FarmCPU  to  select  the  pseudo-QTNs
into the first iteration of the model can be overly restrictive, we
set  this  threshold  to  0.05.  Marker-trait  associations  were
defined  as  significant  when  the p-value  was  lower  than  0.01
with  Bonferroni  correction.  R2 for  each  significant  marker  was
estimated using a  mixed linear  model  as  described in  Zhao et
al.[60]. 

Genomic prediction and marker-assisted selection
model

Eight  contrasting  methods  were  assessed  to  evaluate  the
performance  of  GP:  GBLUP[21,22],  rrBLUP[23],  BayesA,  BayesB,
BayesC[23,24], BRR, BL[25] and RKHS[42].

Both  GBLUP  and  rrBLUP  are  mixed  linear  model-based
methods. GBLUP uses an estimated additive genomic relation-
ship  matrix  to  estimate  the  breeding  value  of  the  individuals.
We  used  the  'A.mat'  function  in  R  package  rrBLUP[61] to
calculate the additive relationship matrix, inverse of the matrix
was  generated  using  'mat2sparse'  function  in  R  package
Matrix[62],  the  later  was  used  for  fitting  GBLUP  model  using
ASReml-R package[63]. The GBLUP model can be represented as:

y = Xb+Za+ e

N(0,Aσ2
a)

σ2
a

N
(
0, Iσ2

e

)
σ2

e

in  which y is  the  vector  of  phenotypes; b is  the  vector  of  fixed
effect  to  the  overall  mean; a is  the  vector  of  random  additive
genetic effects following normal distribution ,  where A
is  the  estimated  additive  genomic  relationship  matrix  and  is
the variance of a; e is the vector of random residuals with a normal

distribution , where I is the identity matrix and  is the

variance of residue; X and Z were incidence matrices linking b and
a to y, respectively.

For  rrBLUP,  the  model  was  implemented  using  the
'mixed.solve' function in R package rrBLUP[61]. Since no missing
genotypic  data  is  allowed  in  rrBLUP,  we  input  the  missing
genotype with the mean for each marker. The rrBLUP model is
fitted using a standard linear regression formula:

y = µ+Zg+ e

N(0, Iσ2
g)

Iσ2
g

where µ represents the overall  mean of phenotype vector y; g is
the  vector  of  marker  effect  with  a  normal  distribution 
with variance of ; e is the vector of random residuals
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All  Bayesian models  were conducted by BGLR package[26] in
R with the default parameters. A minimum of 15,000 iterations
of  sampling  followed  by  a  burn-in  period  of  5,000  iterations
was  applied  for  each  run.  Missing  genotypic  data  are  not
allowed  in  the  BGLR,  thus  the  same  input  dataset  for  rrBLUP
were  used.  The  Bayesian  models  can  be  represented  by  the
equation:

y = µ+Xβ+ e

where µ is  the  overall  mean; β is  the  vector  of  marker  effects
corresponding to the columns of marker incidence matrix X; e is
the  vector  of  residuals.  These  methods  use  different  prior
densities  which  induce  different  conditional  distribution  of
marker  effects[24].  BayesA  uses  scaled-t  prior  density[26].  BayesB
and BayesC implement two finite mixture priors:  a point of mass
at zero and a scaled-t slab for BayesB and a mixture of a point of
mass  at  zero  and  a  Gaussian  slab  for  BayesC[26].  For  BRR,  the
Gaussian prior shrinks all marker effects to a similar extent, and for
BL a double-exponential  prior density is used to induce the type
of shrinkage based on size-of-effect[64].

{xi, xi′ }∑
i
∑

i′αiαi′K
(
xixi′
)
≥ 0

αi

A  single-kernel  RKHS  regression  model  was  also
implemented by BGLR, using the kinship matrix estimated from
GAPIT[57].  In  the  RKHS  method,  Reproducing  Kernel  (RK)
provides  a  linear  combination  of  the  basis  function.  RK  maps
from pairs of vectors of genotypes, ,  from input set into

the  real  line  which  must  satisfy ,  for  any

non-null  sequence  of  coefficient [26].  RKHS  uses  a  Gaussian
prior  evaluated  by  the  square  Euclidean  distance  between
markers to substitute the observed genetic relationship matrix
by the kernel matrix[26,42].  Similar to the implementation of the
Bayesian  models,  RHKS  was  conducted  using  15,000  burns,
5000 burn-in iterations and the smoothing parameter h was set
to the default value of 0.5.

We  also  fitted  a  marker-assisted  selection  (MAS)  model  by
multilinear  regression  (MLR).  Markers  included  in  the  MAS
model  were  selected  by  the  markers  detected  in  GWAS.
Considering  the  Bonferroni  correction  in  GWAS  is  typically
stringent,  and  important  loci  associated  with  small  effect  can
be  excluded,  we  included  all  markers  with  an  exploratory
significant  threshold  of p <  0.0001  (without  Bonferroni
correction)[39] in  the  MAS  model.  MAS  model  was  fitted  in  R
using the function 'lm( )':

y = b0+

N∑
i=1

bixi+ e

where b0 is the intercept of the regression line; bi is the coefficient
of ith marker  included in  the  model;  and xi is  the  genotype of ith

marker. 

Model evaluation
To  evaluate  the  model  performance  for  both  MAS  and  GP

models,  a  five-fold  cross-validation  scheme  was  used  to
estimate  the  predictive  accuracy  (PA)  for  all  three  datasets
(Bolinha,  Contender  and  Combined).  All  accessions  within  the
dataset  were  randomly  divided  into  five  groups,  each  group
was  predicted  using  four  other  groups  as  the  training
population. PA was calculated as Pearson's correlation between
the genomic estimated breeding values (GEBVs) and observed
BLUP  values  for  normal  distributed  datasets  and  Spearman's
rank correlation for skewed datasets (NW DSI).  For each model
described in the previous section, the five-fold cross-validation

was repeated 100 times with different random resampling.  PA
was calculated after each run. Mean PA of the eight GP models
and  MAS  model  were  calculated  and  compared  in  SPSS
Statistics v. 27 (IBM®).

In  addition  to  the  five-fold  cross-validation,  we  applied  two
other  cross  validation  strategies:  (1)  To  study  the  GP
performance  of  close  genetic  relationships  between  training
and  testing  populations,  leave-one-family-out  (LOF)  cross
validation  was  conducted  separately  to  the  Bolinha  and
Contender datasets,  in which the phenotypes of one breeding
family are masked and predicted by all other breeding families;
(2) To study the GP performance when the genetic relationship
between  training  and  testing  populations  is  relatively  distant,
we used the Bolinha and Contender datasets separately as the
training population to predict the rest of the individuals in the
testing panel.

Lastly,  all  individuals  in  the  testing  panel  were  used  as  the
training population and fitted to the GP models to predict the
DSI  in  the  validating  panel.  Since  the  phenotypic  data  in  the
testing  and  validating  panel  were  obtained  using  different
methods  (disease  assay  for  testing  panel;  field  evaluation  for
validating  panel)  in  different  seasons  (2015−2020  for  testing
panel;  2019−2020  for  validating  panel),  to  account  for  season
effect,  GP models were fitted to BLUPs of  2019 and 2020 DSIs.
Correlation  analysis  between  GEBVs  and  brown  rot  disease
incidence  of  the  field  collected  data  was  performed  using
Spearman's rank correlation.
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