Recently, due to the rapid development of deep learning methods, there has been a growing interest in Neuro-symbolic Artificial Intelligence, which takes advantage of both explicit symbolic knowledge and statistical sub-symbolic neural knowledge representations. In sensor-based human performance prediction (HPP) for safety-critical applications, where maintaining optimal human and system performance is a major concern, neuro-symbolic AI systems can improve sensor-based HPP tasks in complex working settings. In this paper, we focus on the advantages of hybrid neuro-symbolic AI systems, present the outstanding challenges and propose possible solutions for HPP in the safety-critical application domain.

Neuro-Symbolic AI for Sensor-based Human Performance Prediction: System Architectures and Applications / I.F. Fernandes Ramos, G. Gianini, E. Damiani - In: Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022) / [a cura di] M.C. Leva, E. Patelli, L. Podofillini, S. Wilson. - [s.l] : Research Publishing, Singapore, 2022. - ISBN 978-981-18-5183-4. - pp. 3210-3217 (( Intervento presentato al 32. convegno European Safety and Reliability Conference (ESREL 2022) tenutosi a Dublin nel 2022 [10.3850/978-981-18-5183-4_S33-01-310-cd].

Neuro-Symbolic AI for Sensor-based Human Performance Prediction: System Architectures and Applications

I.F. Fernandes Ramos
Primo
;
G. Gianini
Secondo
;
E. Damiani
Ultimo
2022

Abstract

Recently, due to the rapid development of deep learning methods, there has been a growing interest in Neuro-symbolic Artificial Intelligence, which takes advantage of both explicit symbolic knowledge and statistical sub-symbolic neural knowledge representations. In sensor-based human performance prediction (HPP) for safety-critical applications, where maintaining optimal human and system performance is a major concern, neuro-symbolic AI systems can improve sensor-based HPP tasks in complex working settings. In this paper, we focus on the advantages of hybrid neuro-symbolic AI systems, present the outstanding challenges and propose possible solutions for HPP in the safety-critical application domain.
No
English
Artificial Intelligence; Artificial Neural Networks; Neuro-Symbolic Systems; Human Performance Prediction; Safety-Critical Applications; Explicit Symbolic Knowledge;
Settore INF/01 - Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore INFO-01/A - Informatica
Intervento a convegno
Esperti anonimi
Ricerca applicata
Pubblicazione scientifica
   Collaborative Intelligence for Safety Critical systems (CISC)
   CISC
   EUROPEAN COMMISSION
   H2020
   955901
Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)
M.C. Leva, E. Patelli, L. Podofillini, S. Wilson
Research Publishing, Singapore
2022
3210
3217
8
978-981-18-5183-4
Volume a diffusione internazionale
Diamond
0
Euro
European Safety and Reliability Conference (ESREL 2022)
Dublin
2022
32
Convegno internazionale
Intervento inviato
https://www.rpsonline.com.sg/proceedings/esrel2022/html/S33-01-310.xml
manual
Aderisco
I.F. Fernandes Ramos, G. Gianini, E. Damiani
Book Part (author)
open
273
Neuro-Symbolic AI for Sensor-based Human Performance Prediction: System Architectures and Applications / I.F. Fernandes Ramos, G. Gianini, E. Damiani - In: Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022) / [a cura di] M.C. Leva, E. Patelli, L. Podofillini, S. Wilson. - [s.l] : Research Publishing, Singapore, 2022. - ISBN 978-981-18-5183-4. - pp. 3210-3217 (( Intervento presentato al 32. convegno European Safety and Reliability Conference (ESREL 2022) tenutosi a Dublin nel 2022 [10.3850/978-981-18-5183-4_S33-01-310-cd].
info:eu-repo/semantics/bookPart
3
Prodotti della ricerca::03 - Contributo in volume
File in questo prodotto:
File Dimensione Formato  
S33-01-310.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/972890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact