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Recently, due to the rapid development of deep learning methods, there has been a growing interest in Neuro-
symbolic Artificial Intelligence, which takes advantage of both explicit symbolic knowledge and statistical sub-
symbolic neural knowledge representations. In sensor-based human performance prediction (HPP) for safety-critical
applications, where maintaining optimal human and system performance is a major concern, neuro-symbolic Al
systems can improve sensor-based HPP tasks in complex working settings. In this paper, we focus on the advantages
of hybrid neuro-symbolic Al systems, present the outstanding challenges and propose possible solutions for HPP in

the safety-critical application domain.
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1. Introduction

The assessment of human performance represents
an important challenge in safety-critical industries
such as aviation, medicine, military, space ex-
ploration, automotive, nuclear and infrastructure
industries, where errors can result in loss of life,
significant damage to property or environment.
This topic has been heavily researched and trans-
lated into practice through the discipline of hu-
man factors and ergonomics (HFE). To anticipate
and prevent critical scenarios, it is essential to
identify what are the reliable predictors of human
performance that can be monitored and analysed
by the computer/machine and used to support the
human operator. Many factors in a complex work
setting can impact human performance. Human
performance can be modelled by two macro fac-
tors: task complexity and human capability. In the
field of physical, organizational and cognitive er-
gonomics, most of the external/extrinsic factors to
the human that can impact the task complexity and
human capability have been taken into account
in the design of systems, procedures and policies

for safety-critical systems. On the other hand,
intrinsic factors (inherent to the individual) that
affect human capability and performance, such
as fatigue, boredom, anxiety, stress or internal
distraction Krueger (1989); Staal (2004); Hanoch
and Vitouch (2004), are harder to identify, pre-
dict and prevent. To mitigate the occurrence of
errors originated by intrinsic factors, the available
solutions often consist of preventative measures
enacted before the task, or operator state assess-
ment using behavioural indicators or subjective
questionnaires

In safety-critical complex systems, the predic-
tion of decreased human performance and adap-
tive support of the human operator, can benefit
from the monitoring of relevant intrinsic factors
and their impact on the cognitive (attention, mem-
ory, decision-making, processing speed), physi-
cal (dexterity, resilience) and perceptive capability
(auditory, visual perception and processing). Sen-
sor data from body signals have been extensively
used as indicators of intrinsic human factors, such
as mental, cognitive and emotional states, that
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affect human performance in a complex and un-
certain way. (see for instance Zhou et al. (2020)).
Deep Learning (DL), in the meanwhile, has
gained momentum due to the increased availabil-
ity of large data sets, computational power and
data processing options. DL methods allow effi-
cient feature mining and learning from raw data,
including from heterogeneous time-series data.

1.1. Challenges in sensor-based human
performance prediction

The majority of current studies that use sensor-

based deep learning methods focus on mental

workload, a multidimensional construct to repre-

sent how the human mental and cognitive lim-

ited resources are affected by the task demands,

in a specific environmental context Young et al.

(2015). Despite its usefulness to determine situ-

ations of excessive workload, which can lead to

serious accidents in safety-critical scenarios, there
is no common formal definition of the concept, of
how to measure it, and no clear relationship with

human performance Dehais et al. (2020).
Moreover, most studies use very well-defined

simple tasks that are made to elicit different lev-
els of mental workload easily differentiated from
each other, but human performance degradation
depends on a large number of known and un-
known factors in complex human-system interac-
tion scenarios, and it can have different meanings
in different contexts and tasks.

Human performance in real complex work en-
vironments is a heterogeneous multi-factor multi-
context problem, hard to capture and model in
a meaningful and general way. When attempting
to leverage black-box deep learning methods, it
is therefore essential to consider the quantity and
quality of the data that is used, and to consider the
task and environmental context to understand and
verify the generated outputs.

On this basis, some general open challenges in
the field can be identified:

e The application of such data-driven systems
to real complex work environments and tasks,
requires the recording, integration and labelling
of very large amounts of training data under
many conditions (that should include uncom-

mon safety-related emergency conditions for
safety-critical applications).

o Current sensor-based HPP models lack integra-
tion of context and task-related knowledge, that
are essential to the able to generalize such mod-
els to different tasks and work environments.

e HPP, especially for safety-critical applications,
requires Al outputs and learned knowledge to
be interpretable, verifiable, and trustworthy.

e Sensor-based HPP models require ways to iden-
tify and correct biases related to data being
gathered from a limited sample of the popula-
tion and to the large number of factors that can
affect performance.

2. Neuro-symbolic AI solutions

The study of Neuro-symbolic systems was ini-
tially motivated by attempts to model the human
brain, the mind, and learning and reasoning abil-
ities in the field of computational cognitive mod-
elling.

Currently, neuro-symbolic Al research has
evolved by encompassing a variety of Al ap-
proaches that make use, on one side, of ex-
plicit symbolic knowledge representations — such
as logic rules, ontologies, knowledge bases and
graphs that allow to formally represent expert or
world knowledge — and, on the other side, of
neural knowledge representations, or embeddings.
The two kinds of representations can be used in a
hybrid or integrated way, allowing for the incorpo-
ration of different types of knowledge, at different
stages of the learning/reasoning workflow.

Neuro-symbolic Al can thus be defined as the
study of Al systems that take advantage of both
data-driven (also referred to as sub-symbolic)
deep neural learning and knowledge-based sym-
bolic reasoning, with the goal of mitigating the
weaknesses while preserving the strengths of
these two complementary methodologies. Expe-
rience shows (see Sarker et al. (2021)) that,
when used together, the two methodologies can
bring several benefits: they require less labelled
data, can correct/identify biased data, increase
transparency and explainability, handle out-of-
distribution data points, even when not in training
data, maintain scalability, ability to handle data
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uncertainties, high recognition rates, and globally

increase the capabilities of the system using back-

ground knowledge.

The way in which neural and symbolic repre-
sentations can interact, obviously, depends on the
kind of prior knowledge that is being processed.
The work by von Rueden et al. (2021) identified
the most commonly used sources of prior knowl-
edge: scientific knowledge (formal, scientifically
validated), world knowledge (common-sense, in-
tuitive, validated by reasoning about observed
world relationships), or expert knowledge (infor-
mal, validated by an expert group). Such knowl-
edge can be represented by different types of for-
malizations, often dependent on the source and on
how it can be integrated into the Al pipeline. Some
symbolic knowledge representation types follow.
e [ogic Rules can formalize knowledge about

facts and dependencies (e.g. IF A THEN B).

e Knowledge Graphs (KGs) consist of vertices
describing concepts, and edges representing re-
lationships (e.g. "Man wears hat”); weighted
edges quantify strength/sign of a relationship.

e Ontologies are KGs defining a set of representa-
tional primitives with which to model a domain
of knowledge or discourse; the primitives are
typically classes (or sets), attributes (or proper-
ties), and relationships among them.

Kautz proposed a taxonomy (reported by Sarker

et al. (2021)) with 5 categories based on the ar-

chitecture and integration of neural and symbolic
representations in the system pipeline :

e [Symbolic Neuro Symbolic] - both the input and
output information are symbolic: reasoning or
learning is carried out by the neural system.
Examples can be found in Xie et al. (2019);
Manhaeve et al. (2018); Yang et al. (2018).

e [Symbolic [Neuro]] - a neural system is used to
learn a search strategy or detect patterns within
a symbolic reasoner. A notorious example is
AlphaGo by Silver et al. (2016), a Go playing
system that combines Monte Carlo Tree search
and DL to narrow the search space and obtain
the best next move; another one is represented
by self-driving cars systems, where neural sys-
tems are in charge of perception and a symbolic
reasoner of decision making.
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e [Neuro U compile(Symbolic)] - symbolic rules
are used as input and output and are compiled to
be processed by neural system. Examples are in
Hohenecker and Lukasiewicz (2017); de Pen-
ning et al. (2010); Xu et al. (2018).

e [Neuro — Symbolic] — pipeline with a neural
system followed by a symbolic reasoner. Exam-
ples are in Dang-Nhu (2020); Mao et al. (2019).

e [Neuro[Symbolic]] - a symbolic reasoner is
used to process learned neural representations
within the neural system. The neural network
will learn from the inputs/outputs of the sym-
bolic reasoner Sarker et al. (2021).

The work by van Bekkum et al. (2021) went fur-

ther in describing the interaction between the sub-

symbolic and the symbolic components of a hy-
brid neuro-symbolic system, and proposed more
than 15 architectures based on simple base mod-
ules. The proposed architectures are used herein to
describe the proposed hybrid systems and provide

an idea (even though a high-level one) of how a

system can be configured for specific Al tasks and

applications.

3. Neuro-symbolic AI: possible
approaches for sensor-based HPP

Neuro-symbolic Al has recently regained atten-
tion due to the rapid development of DL methods,
which has been accompanied by the increasing
need of more data and, as the models become
more complex, the need for explanations of the
decisions it makes Sarker et al. (2021); von Rue-
den et al. (2021); Tiddi and Schlobach (2022).
Developments have been recently made in the
fields of natural language, image recognition, rec-
ommender systems and rule-based machine learn-
ing Tiddi and Schlobach (2022). However, little
work has been proposed to tackle sensor-based
predictive tasks. This can be partially attributed
to the prevalence of machine learning methods,
that rely on manual feature selection, over deep
learning methods, that require unrealistic large
amounts of data to be able to detect less fre-
quent complex events from multiple sensor data
Xing et al. (2020). Moreover, the integration of
prior symbolic knowledge into deep architectures
remains a challenge, as in order to maintain its
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meaning, interpretability and logic, the reasoning
process cannot be made differentiable Tiddi and
Schlobach (2022); Xu et al. (2018). The integra-
tion is therefore most commonly performed at the
level of the learning algorithm or at the output
of the model, as to validate the predictions von
Rueden et al. (2021). Out of the benefits of using
hybrid Al systems, the approaches that are pro-
posed next focus on the perspective of using world
or expert context-related knowledge as a prior and
on making learned knowledge more interpretable,
verifiable, and trustworthy, essential characteris-
tics of Al for safety-critical applications.

3.1. A first example
3.1.1. An ideal Neuro-Symbolic Agent

NSCA is a Neuro-symbolic Cognitive Agent de-
veloped in de Penning et al. (2010) which in-
tegrates symbolic and neural representations, by
using a Recurrent Temporal Restricted Boltzmann
Machine (RTRBM) to encode temporal logical
rules/relations in terms of beliefs and previously
applied rules. These rules can be constructed
based on expert knowledge about a complex sys-
tem/task. The agent was developed to model com-
plex temporal relations between the input data by
induction, training the neural network to reflect
the rules that can be applied based on the inputs
to the visible layer (beliefs) and the relationship
with previously applied rules.*

The beliefs can be continuous or binary data
representing probabilities of occurrence of an
event, state of the environment (e.g. raining =
true), real values (e.g. age = 16) or even equali-
ties or inequalities to represent beliefs over contin-
uous variables (e.g. speed < 30). This is possible

2An RTRBM consists of an artificial neural network with
two layers: a visible layer V' and a hidden layer, connected
by weights W. Recurrent connections link the hidden unit
activations at the current time step and the previous time step.
The hidden units are conditionally independent and can be
treated as calculating the posterior probability that a certain
rule R is applied given the observed beliefs b (input data at
current time step ¢ in the visible layer V') and the previously
applied rule 7,1 (i.e. P(R|B = b,Ri—1 = r¢—1). The
likelihood of the beliefs and previously applied rules can be
computed based on the most applicable rules. The network can
then be trained by comparing the inferred values of the beliefs
and previous rules and the observed values.

due to the continuous stochastic visible layer that
is used to represent the beliefs as fuzzy sets with
a gaussian membership function, useful when us-
ing subjective knowledge. The rules should be
defined about the beliefs on conditions, scenarios
or contexts and related to the previous time step.
Any rule can then be mapped to the RTRBM as a
relation between the hidden unit (rule), the visible
units (beliefs) and the previously activated hidden
units (previously applied rules). The network then
learns (by induction) from training with real ex-
amples, using the initially defined rules as prior
knowledge, and can be used to perform deduction
over new data or for extraction of the updated rules
in symbolic form.

In de Penning et al. (2010), the NSCA was used
to model existing complex expert knowledge of
driving instructors, trained with data from driving
simulators and expert evaluations, and used to
infer driver assessment scores.

3.1.2. Neuro-Symbolic Agent for safety-critical
environemnts

It is now clearer how the principles and archi-
tecture of this method can benefit human per-
formance prediction/assessment, specifically in
safety-critical activities, in which getting training
data is not feasible for many dangerous scenarios
(such as in the oil and gas industry, aviation indus-
try or rail industry). Moreover, in these types of
industries it is common to perform human reliabil-
ity assessment studies, that can provide qualitative
or quantitative information about the likelihood
of human error, under different conditions and at
different stages of a task. The already existing
domain and expert knowledge can be used as
prior knowledge when predicting or assessing the
response of an operator in different types of tasks,
and emergency situations with different levels of
risk and/or priority. In addition, the encoding of
the prior knowledge as temporal logic rules main-
tains the transparency of the model and explain-
ability of the inferred performance scores.

A possible way to apply this method consists of
building a hybrid system, where one or more deep
neural model can be used to automatically extract
relevant complex patterns from body sensor data,
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to classify the state of the operator (can be at-
tention, mental workload, physical workload, task
engagement or emotion), followed by a neuro-
symbolic cognitive agent, such as a NSCA, to
encode task-related and context-related symbolic
rules, and predict the operator performance based
on prior and learnt knowledge.

As a practical example, in an alarm manage-
ment control room scenario, a prior task-related
rule can be related to the maximum number of
alarms that can be turned on for a period of time,
that will lead to an assessment of decreased oper-
ator performance. Both the maximum number of
alarms and the period of time variables can be set
initially according to expert knowledge and up-
dated during training, according to the predicted
state of the operator, the state of the process being
monitored, the severity or priority of the alarms,
or even the complexity of the task.

The source of the prior knowledge in this ap-
plication is mostly scientific and/or expert knowl-
edge, represented as temporal symbolic logic
rules, and is an hybrid system architecture com-
bining two categories of the Kautz proposed tax-
onomy: Neuro — Neuro[compile(Symbolic)], a
strictly neural system followed by another neural
system that processes compiled symbolic logic
rules about prior knowledge, and also outputs
symbolic logic rules. A possible general architec-
ture for the hybrid system is the one represented in
Figure 1, using the elementary pattern proposed in
van Bekkum et al. (2021).

3.2. A second example

Another possible approach can be applied for op-
erator performance/emotion/state multi-class clas-
sification task, by considering the semantic mean-
ing of the labels and use it to constrain the learning
algorithm, by adding an additional semantic loss
term. An example is when classifying multiple
states, where some contradict each other and oth-
ers do not, such as positive emotions and nega-
tive ones. In this case, the learning performance
might be improved by maximizing the difference
of the predicted probabilities between the sets
of conflicting labels. The work Xu et al. (2018),
proposed a method for using symbolic knowledge
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in deep learning systems, through the application
of a semantic loss function that constrains the
output. It further demonstrated that applying a
semantic loss term, even for the simple exactly-
one constraint (exactly only one output label must
be true and the rest false), can improve semi-
supervised classification problems by increasing
the confidence of prediction for unlabelled data.
The source of the symbolic knowledge in this
application it is world knowledge, represented as
semantic consistency constraints, and the hybrid
system general architecture, not covered by the
Kautz taxonomy, can be described by an archi-
tecture proposed in van Bekkum et al. (2021),
specifically a pattern that uses symbolic rules to
inform neural learning (Figure 2).

3.3. A third example

The final approach proposed here focuses on using
end-to-end deep learning methods and integrat-
ing a posteriori domain ontologies or knowledge
graphs to increase the interpretability of the pre-
dictions, and produce more understandable ex-
planations. This type of reasoning systems for
post-hoc construction of explanations has been
proposed before to construct explanations for the
prediction of stock trends, by using a large ex-
isting knowledge graphs with data about events
and price values Deng et al. (2019). Similarly, in
Confalonieri et al. (2020), ontologies modelling
the domain knowledge are added to the process
of explanation generation, with an algorithm that
uses decision trees to explain artificial neural net-
works. A user study showed that the understand-
ability of the generated decision trees increased
with the integration of the domain knowledge.
An example of an application is to explain the
outcomes of a deep learning model, trained to pre-
dict the driver’s reaction time to a stimulus while
driving, using heterogeneous features, such as the
driver’s mental state, the driver’s characteristics
(age, experience), the weather, noise level, light
level, traffic, etc. In this case it is possible to build
a domain ontology relating these concepts, enrich-
ing them with semantic information and allowing
to generate more specific or general explanations,
according to the user preference. The source of the
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data: sensors

generate: train

symbolic rules

generate: train

data: sensors
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Fig. 1.

symbol: context

Hybrid system architecture pattern modified from van Bekkum et al. (2021), to implement NSCA for HPP.

data

—(generate: train>

symbol

—»( infer: deduce )—»

(7)

Fig. 2. Hybrid system architecture pattern proposed in van Bekkum et al. (2021), to implement informed learning

with prior knowledge.

symbolic knowledge in this general application
it is world knowledge, represented as a domain
ontology, and the hybrid system general architec-
ture can be described by both the Kautz category
Neuro — Symbolic, and by an architecture pro-
posed in van Bekkum et al. (2021) (Figure 3).

3.4. A fourth example

A more concrete application example that can
benefit from all three above-mentioned hybrid
neuro-symbolic approaches, can be in an indus-
trial assembly line scenario, where the operator
performs a sequence of complex activities. As-

suming the factory is equipped with multiple sen-
sors including body or operator focused sensors,
this data can be used by a deep learning model to
classify/detect simple activities from the raw sen-
sor data (perception layer) and followed by a rea-
soning model to associate the detected sequences
of simple activities with high-level more complex
assembly line activities (reasoning layer), accord-
ing to prior human knowledge about the assembly
line tasks. This hybrid model can be used to de-
tect human errors or deviations from the expected
sequence of activities, for early detection of errors
or prevention of future ones. The hybrid system
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( infer: deduce )

L tain&deduce
data —0<generate: train>—~< model >
data < infer: deduce >—v
)
Fig. 3.

symbol: trace

Hybrid system architecture pattern proposed in van Bekkum et al. (2021), for integrating learning with

domain knowledge graphs or ontologies for post-hoc explainability.

to be applied here is similar to the one in Figure 1,
however the detected sequence of simple activities
have a direct link to the final complex assembly
activity that is detected, so for this application a
hybrid system that allows for end-to-end training
with only the raw sensor data and high-level as-
sembly activity annotations given, would be ideal.
Such a system, called Neuroplex, was proposed
in Xing et al. (2020), in which neural networks
were used for perception of simple events from
sensor data and neurally reconstructed reasoning
models were used to detect complex events with
larger spatial and temporal dependencies (after
being trained with human knowledge provided
as logical rules about simple-to-complex event
dependencies). In addition, a semantic loss was
also applied on the intermediate symbolic layer,
similarly to the second approach proposed here for
human state multi-class classification, to constrain
the symbolic output of the neural network in order
to improve the training process. Another parallel
Al system can be added to this application sce-
nario, by training a deep learning model to predict
these deviations, based on big sensor data from the
operator and the system, with the goal to predict
and prevent errors. To have a better understanding
of the factors that contribute to errors and devi-
ations, it is essential that the model predictions
can be explained. Considering that in this scenario
the operator and system factors, and the relation-
ships between them, are complex and possibly
hard to understand without knowledge about the
processes and production activities of the factory,
a dedicated domain ontology or knowledge graph

can be built beforehand by experts to aid the con-
struction of more understandable explanations.

4. Conclusions

The preliminary study performed in this work was
able to establish the benefits that neuro-symbolic
Al approaches can bring to the domain of sensor-
based human performance prediction. It was also
clear that, for this type of task, the integration
of symbolic knowledge with deep neural archi-
tectures is difficult and there are few developed
methodologies at the moment for this purpose.
Further work is needed to be able to demonstrate
the feasibility of hybrid AI systems for sensor-
based HPP.
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