We study symmetry and quantitative approximate symmetry for an overdetermined problem involving the fractional torsion problem in a bounded open set ohm subset of R n . More precisely, we prove that if the fractional torsion function has a C 1 level surface which is parallel to the boundary partial differential ohm then ohm is a ball. If instead we assume that the solution is close to a constant on a parallel surface to the boundary, then we quantitatively prove that ohm is close to a ball. Our results use techniques which are peculiar of the nonlocal case as, for instance, quantitative versions of fractional Hopf boundary point lemma and boundary Harnack estimates for antisymmetric functions. We also provide an application to the study of rural-urban fringes in population settlements.

Symmetry and quantitative stability for the parallel surface fractional torsion problem / G. Ciraolo, S. Dipierro, G. Poggesi, L. Pollastro, E. Valdinoci. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 376:5(2023 May), pp. 3515-3540. [10.1090/tran/8837]

Symmetry and quantitative stability for the parallel surface fractional torsion problem

G. Ciraolo
Primo
;
S. Dipierro
Secondo
;
L. Pollastro
Penultimo
;
E. Valdinoci
Ultimo
2023

Abstract

We study symmetry and quantitative approximate symmetry for an overdetermined problem involving the fractional torsion problem in a bounded open set ohm subset of R n . More precisely, we prove that if the fractional torsion function has a C 1 level surface which is parallel to the boundary partial differential ohm then ohm is a ball. If instead we assume that the solution is close to a constant on a parallel surface to the boundary, then we quantitatively prove that ohm is close to a ball. Our results use techniques which are peculiar of the nonlocal case as, for instance, quantitative versions of fractional Hopf boundary point lemma and boundary Harnack estimates for antisymmetric functions. We also provide an application to the study of rural-urban fringes in population settlements.
Settore MAT/05 - Analisi Matematica
mag-2023
18-gen-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
2110.03286 (1).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 754.97 kB
Formato Adobe PDF
754.97 kB Adobe PDF Visualizza/Apri
S0002-9947-2023-08837-7.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 358.97 kB
Formato Adobe PDF
358.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/971498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact