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Abstract

We study symmetry and quantitative approximate symmetry for an overdetermined problem
involving the fractional torsion problem in a bounded open set Ω ⊂ Rn. More precisely, we prove
that if the fractional torsion function has a C1 level surface which is parallel to the boundary
∂Ω then Ω is a ball. If instead we assume that the solution is close to a constant on a parallel
surface to the boundary, then we quantitatively prove that Ω is close to a ball. Our results
use techniques which are peculiar of the nonlocal case as, for instance, quantitative versions
of fractional Hopf boundary point lemma and boundary Harnack estimates for antisymmetric
functions. We also provide an application to the study of rural-urban fringes in population
settlements.

1 Introduction
In the present paper we study an overdetermined problem involving the fractional Laplacian (−∆)s,
with s ∈ (0, 1), which is defined for u ∈ C∞c (Rn) as

(−∆)su(x) := cn,s P.V.

∫
Rn

u(x)− u(z)

|x− z|n+2s
dz,

where
cn,s = s (1− s) 4sπ−n/2

Γ(n/2 + s)

Γ(2− s)
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(see for example [DNPV12a]).
Let G be a smooth and bounded domain1 in Rn. We denote by BR the ball of radius R > 0

centered at the origin and let Ω be the “Minkowski sum of G and BR”, namely

Ω := G+BR := {x+ y | x ∈ G, |y| < R}. (1.1)

Our main goal is to study symmetry and quantitative stability properties for the fractional torsion
problem {

(−∆)su = 1 in Ω,

u = 0 in Rn \ Ω,
(1.2)

with the overdetermined condition
u = c on ∂G. (1.3)

The overdetermined problem (1.2)-(1.3) was firstly studied in [MS10] for the classical Laplace oper-
ator and it was motivated by the study of invariant isothermic surfaces of a nonlinear nondegenerate
fast diffusion equation. Later, in [CMS15] and [CMS16] symmetry and quantitative approximate
symmetry results were studied for more general operators. See also [Sha12] for related symmetry
results regarding the parallel surface problem.

In this manuscript we consider the nonlocal counterpart of this setting. Namely, on the one
hand, by Lax-Milgram Theorem, problem (1.2) admits a solution. On the other, it is not clear
whether or not a solution of (1.2) exists that also satisfies (1.3). This is a classical question in the
realm of overdetermined problems and typically one can prove that a solution exists if and only if
the domain satisfies some symmetry. In this context, our first main result is the following.

Theorem 1.1. Let G be an open bounded set of Rn with ∂G of class C1 and set Ω := G+BR, for
some R > 0. There exists a solution u ∈ Cs(Ω) of (1.2) satisfying the additional condition (1.3) if
and only if G (and therefore Ω) is a ball.

It is clear that one implication of Theorem 1.1 is trivial. Indeed, given a ball B = Br(x0) of
radius r > 0 and center x0 ∈ Rn we can compute the explicit solution ψB of (1.2) with Ω = B (see
for example [Dyd12]), which is given by

ψB(x) = γn,s(r
2 − |x− x0|2)s+, (1.4)

where

γn,s :=
4−sΓ(n/2)

Γ(n/2 + s)Γ(1 + s)
. (1.5)

Since ψB is radial, then condition (1.3) is automatically satisfied for any G = Bρ(x0), with ρ < r.
Therefore, in order to prove Theorem 1.1 it is enough to show that if u is a solution to (1.2)
satisfying (1.3) then Ω is a ball. In other words, we prove that if a solution of the torsion problem
(1.2) has a level set which is parallel to ∂Ω then the domain is a ball and the solution is radially
symmetric. Here we notice that the regularity assumptions required on ∂G are the minimal ones
in order to be able to start the moving planes procedure.

Once the symmetry result for problem (1.2)-(1.3) is achieved, one can ask for its quantitative
stability counterpart (as done in [CMS16] for the classical Laplacian case). More precisely, the
question is the following: if u is almost constant on a parallel surface ∂G, is it true that the set Ω is

1In our notation, “domain” just means “open set”, without any connectedness assumption.
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almost a ball? In this paper we give a positive answer to the problem by performing a quantitative
analysis of the method of moving planes.

It is clear that an answer to this question depends on what we mean for almost. In order to
precisely state our result, we consider the Lipschitz seminorm [u]Γ of u on a surface Γ

[u]Γ := sup
x,y∈Γ, x 6=y

|u(x)− u(y)|
|x− y|

and the parameter

ρ(Ω) := inf{|t− s| | ∃p ∈ Ω such that Bs(p) ⊂ Ω ⊂ Bt(p)} , (1.6)

which controls how much the set Ω differs from a ball (clearly, ρ(Ω) = 0 if and only if Ω is a ball).

Figure 1: An example in which G is C∞ but Ω is not C1.

Our main goal is to obtain quantitative bounds on ρ(Ω) in terms of [u]∂G. In particular, our
second main result2 is the following.

Theorem 1.2. Let G be an open and bounded set of Rn with ∂G of class C1 and let Ω := G+BR.
Assume that ∂Ω is of class C2. Let u ∈ C2(Ω) ∩C(Rn) be a solution of (1.2). Then, we have that

ρ(Ω) ≤ C∗ [u]
1
s+2

∂G , (1.7)
2We observe that there exist sets G which are C∞ but such that Ω := G + BR is not even C1, see e.g. Figure 1.

Moreover, we recall that well known properties of the distance function (see e.g. [GT77, Lemma 14.16] or [DZ94,
Theorem 5.7]) guarantee that a certain amount of regularity of Ω suffices for the regularity of its parallel sets
{x ∈ Ω : dist(x, ∂Ω) > R} if R is small enough, but in general Ω can be even C∞ and its parallel sets may fail to
be C1, see e.g. Figure 2.

These observations justify the regularity assumptions on G and Ω in Theorem 1.2.
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Exp[−1/x]

Figure 2: An example in which a parallel set of Ω is not C1 even though Ω is C∞.

where C∗ > 0 is an explicit constant only depending on n, s, R, and the diameter diam(Ω) of Ω.

Hence, Theorem 1.2 asserts that the quantity [u]∂G bounds from above a pointwise measure of
closeness of Ω to a ball, namely ρ(Ω). The closer [u]∂G is to zero, the closer the domain Ω is to
a ball (in a pointwise sense). Of course, when [u]∂G = 0, estimate (1.7) reduces to ρ(Ω) = 0, and
therefore (1.6) gives that Ω is a ball: in this sense, Theorem 1.2 recovers Theorem 1.1.

We notice that the quantitative estimate (1.7) is of Hölder type and may be not optimal since we
do not recover the optimal linear bound at the limit for s→ 1 which was obtained in [CMS16]. The
main reason for the exponent 1

s+2 in (1.7) is due to the technique used to obtain our quantitative
estimates, which are significantly different from the local case and rely on detecting “useful mass”
of the functions involved in suitable regions of the domain.

We stress that the assumption that the constant C∗ in Theorem 1.2 depends on the diameter
of Ω is essential and cannot be removed: an explicit example will be presented in Section 7.

We finally notice that we do not have to make any assumption on connectedness on G. This is
a remarkable difference with respect to the classical local case [CMS16]. In this direction it is not
difficult to see that Theorems 1.1 and 1.2 hold under weaker assumptions, in particular by assuming
that the value c in (1.3) may be different on each connected component of G. In Section 8 we give
further and more precise details on this result.

This paper is organized as follows. In Section 2 we present a new boundary Harnack result on a
half ball for antisymmetric s-harmonic functions. Section 3 is devoted to the moving planes method
and the proof of Theorem 1.1; we make use of weak and strong maximum principles, as well as the
boundary Harnack that we have established in Section 2.

In Section 4 we present a quantitative version of the fractional Hopf lemma introduced in [FJ15,
Proposition 3.3]. Section 5 uses the previous results in order to get a quantitative stability estimate
in one direction. Lastly, in Section 6 we complete the proof of Theorem 1.2 by passing from the
approximate symmetry in one direction to the desired quantitative symmetry result following an
idea used in [CFMN18].

Section 7 presents an example that shows that the dependence of the constant C∗ in Theorem 1.2
upon the diameter of the domain cannot be removed. In Section 8 we describe some possible
generalization of Theorems 1.1 and 1.2. A technical observation of geometric type is placed in
Appendix A.
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In general, we believe that the auxiliary results developed in this article, such as the boundary
Harnack estimate for antisymmetric s-harmonic functions and the corresponding quantitative ver-
sion of the fractional Hopf lemma are of independent interest and can be used in other contexts
too.

In terms of applications, in addition to the classical motivations in the study of invariant isother-
mic surfaces [MS10], we mention that the overdetermined problem in (1.2) and (1.3) can be inspired
by questions related to population dynamics and specifically to the determination of optimal rural-
urban fringes: in this context, our results would detect that the fair shape for an urban settlement
is the circular one, as detailed in Appendix B.

2 Boundary Harnack inequality
We present here a new boundary Harnack inequality for antisymmetric s-harmonic functions. From
now on, we will employ the notation H+ := {x1 > 0}, H− := {x1 < 0} and T := {x1 = 0}. We
define Q : Rn → Rn, with y 7→ y′ = (−y1, y2, . . . , yn), the reflection with respect to T . Moreover,
for R > 0 we call B+

R := BR ∩H+ and B−R := BR ∩H−.
The main result towards the boundary Harnack inequality in our setting is the following:

Lemma 2.1. Let u ∈ C2(BR) ∩ C(Rn) with∫
Rn

|u(x)|
1 + |x|n+2s

< +∞ (2.1)

be a solution of 
(−∆)su = 0 in BR,
u(x′) = −u(x) for every x ∈ Rn,
u ≥ 0 in H+.

There exists a constant K > 1 only depending on n and s such that, for every z ∈ B+
R/2 and for

every x ∈ BR/4(z) ∩B+
R we have

1

K

u(z)

z1
≤ u(x)

x1
≤ Ku(z)

z1
. (2.2)

Proof. We recall that the Poisson Kernel for the fractional Laplacian in the ball is given by (see for
example [Buc16])

Pn,s(x, y) := cn,s

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
.

Hence for every x ∈ BR, we have

u(x)

cn,s
=

∫
Rn\BR(0)

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
u(y) dy

=

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y|n
u(y) dy −

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s
1

|x− y′|n
u(y) dy

=

∫
H+\B+

R

(
R2 − |x|2

|y|2 −R2

)s(
1

|x− y|n
− 1

|x− y′|n

)
u(y) dy =:

∫
H+\B+

R

Tn,s(x, y)

cn,s
u(y)dy.
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Our goal is to show that there exists a constant K > 1 depending only on n and s such that

1

K

x1

z1
≤ Tn,s(x, y)

Tn,s(z, y)
≤ K x1

z1
, (2.3)

for every z ∈ B+
R/2, x ∈ BR/4(z) ∩B+

R and y ∈ H+ \B+
R .

We remark that once (2.3) is established the claim in (2.2) readily follows, since

u(x)

x1
=

∫
H+\B+

R

Tn,s(x, y)

x1
u(y)dy ≤ K

∫
H+\B+

R

Tn,s(z, y)

z1
u(y)dy = K

u(z)

z1
,

which is precisely the second inequality in (2.2). The first inequality in (2.2) can be obtained simi-
larly.

Now we prove (2.3). We notice that

Tn,s(x, y)

Tn,s(z, y)
=

(
R2 − |x|2

|y|2 −R2

)s( |y|2 −R2

R2 − |z|2

)s(
1

|x− y|n
− 1

|x− y′|n

)(
1

|z − y|n
− 1

|z − y′|n

)−1

=

(
R2 − |x|2

R2 − |z|2

)s |z − y|n
|x− y|n

|z − y′|n

|x− y′|n
|x− y′|n − |x− y|n

|z − y′|n − |z − y|n
,

(2.4)

and we estimate the first term as follows(
7

16

)s
≤
(
R2 − (3R/4)2

R2

)s
≤
(
R2 − |x|2

R2 − |z|2

)s
≤
(

R2

R2 − (R/2)2

)s
≤
(

4

3

)s
. (2.5)

Moreover, we observe that

|z − y|
|x− y|

≤ |x− y|
|x− y|

+
|x− z|
|x− y|

≤ 1 +
R/4

R/4
= 2,

|z − y|
|x− y|

≥ |y| − |z|
|y|+ |x|

≥ |y| −R/2
|y|+ 3R/4

≥ 2

7
.

(2.6)

Now, considering the last terms in (2.4), we can write

|z − y′|n

|x− y′|n
|x− y′|n − |x− y|n

|z − y′|n − |z − y|n
=:

1− αn

1− βn
, (2.7)

where
α =

|x− y|
|x− y′|

and β =
|z − y|
|z − y′|

.

We observe that

0 ≤ α2 =
|x− y|2

|x− y′|2
= 1− 4x1y1

|x− y′|2
≤ 1 and 0 ≤ β2 =

|z − y|2

|z − y′|2
= 1− 4z1y1

|z − y′|2
≤ 1 . (2.8)

Going back to (2.7) we write

1− αn

1− βn
=

(1− α)(1 + α+ · · ·+ αn−1)

(1− β)(1 + β + · · ·+ βn−1)
=

[
1− α2

1− β2

]
(1 + β)(1 + α+ · · ·+ αn−1)

(1 + α)(1 + β + · · ·+ βn−1)
.
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From (2.8) we easily get
1

2n
≤ (1 + β)(1 + α+ · · ·+ αn−1)

(1 + α)(1 + β + · · ·+ βn−1)
≤ 2n (2.9)

and, using estimates similar to the ones in (2.6),(
2

7

)2
x1

z1
≤ 1− α2

1− β2
≤ 4

x1

z1
. (2.10)

By plugging (2.9) and (2.10) into equation (2.7) and then combining it with (2.5) and (2.6),
from (2.4) we get (

7

16

)s(
2

7

)n
1

2n

x1

z1
≤ Tn,s(x, y)

Tn,s(z, y)
≤
(

4

3

)s
2n+3 n

x1

z1

which leads to (2.3) if we set K = K(n, s) := (4/3)s(7/2)n+2 2n > 1. This completes the proof.

As a consequence of the previous result, we get the following two propositions which provide
boundary Harnack’s inequalities of independent interest:

Proposition 2.2. Let u ∈ C2(BR) ∩ C(Rn) be antisymmetric w.r.t. T , s-harmonic in BR, non-
negative in H+ and such that (2.1) holds. Then,

sup
B+
R/2

u ≤Mu(x̂), (2.11)

where x̂ = R
2 e1 and M > 0 is a constant depending on n and s.

Proof. Let x? ∈ B+
R/2 be such that

u(x?) = sup
B+
R/2

u.

If u(x?) = 0 the result is trivial. Therefore, we can assume u(x?) > 0 and (x?)1 > 0.

We now point out that any point x ∈ B+
R/2 can be connected to x̂ by a Harnack chain made at

most of 3 balls of radius R/4. Hence, by choosing xa, xb ∈ B+
R/2 such that

dist(x?, xa) ≤ R/4, dist(xa, xb) ≤ R/4 and dist(xb, x?) ≤ R/4

we can then apply Lemma 2.1 and get

1

K

u(x?)

(x?)1
≤ u(xa)

(xa)1
≤ K u(xb)

(xb)1
≤ K2 u(x̂)

(x̂)1

which gives

sup
B+
R/2

u = u(x?) ≤ K3 u(x̂)

R/2
(x?)1 ≤ K3 u(x̂),

where in the last inequality we have used that (x?)1 ≤ R/2.
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Proposition 2.3. Let u, v ∈ C2(BR)∩C(Rn) be antisymmetric w.r.t. T and satisfying (2.1), and
assume that {

(−∆)su = 0 = (−∆)sv in B+
R ,

u, v ≥ 0 in H+.
(2.12)

Then
sup
B+
R/2

u

v
≤ K2 inf

B+
R/2

u

v
, (2.13)

where K = K(n, s) > 1 is the constant given in (2.2).

Proof. From Lemma 2.1 we have that for every z ∈ B+
R/2 and every x ∈ BR/4(z) ∩B+

R

1

K2

u(z)

v(z)
≤ u(x)

v(x)
≤ K2u(z)

v(z)
.

The proof then follows by using the Harnack chain as done in the proof of Proposition 2.2.

3 Moving planes method and symmetry result
We introduce the notation needed in order to exploit the moving planes method. Given e ∈ Sn−1,
a set E ⊂ Rn and λ ∈ R, we set

Tλ = T eλ = {x ∈ Rn |x · e = λ} a hyperplane orthogonal to e,
Hλ = He

λ = {x ∈ Rn |x · e > λ} the “positive” half space with respect to Tλ
Eλ = E ∩Hλ the “positive” cap of E,
x′λ = x− 2(x · e− λ) e the reflection of x with respect to Tλ,
Q = Qeλ : Rn → Rn, x 7→ x′λ the reflection with respect to Tλ.

If E ⊂ Rn is an open bounded set with boundary of class C1 and Λe := sup{x · e |x ∈ E} it
makes sense to define

λe = inf{λ ∈ R |Q(Eλ̃) ⊂ E, for all λ̃ ∈ (λ,Λe)}.

From this point on, given a direction e ∈ Sn−1, we will refer to Tλe = T e and Eλe = Ê as the
critical hyperplane and the critical cap with respect to e, respectively, and we call λe the critical
value in the direction e. We now recall from [Ser71] that for any given direction e one of the
following two conditions holds:

Case 1 - The boundary of the cap reflection Qe(Ê) becomes internally tangent to the boundary
of E at some point P 6∈ T e;

Case 2 - the critical hyperplane T e becomes orthogonal to the boundary of E at some point
Q ∈ T e.

Throughout this paper, the method of moving planes will be applied to the set E = G, where G
is the set appearing in (1.1). Hence the minimal regularity assumption that we need on G is that

8



G is of class C1. We also notice that, in our setting, the critical values λe for G are also critical
values for the set Ω, even if we do not need to assume further regularity on Ω in order to apply the
method of moving planes. This is the reason why in Theorem 1.1 we only require that G is of class
C1. We also notice that in Theorem 1.2 we assume that Ω is of class C2, but this assumption is
not needed for the application of the method of moving planes but it comes from using other tools
in the proof.

In order to prove symmetry for the problem (1.2) with condition (1.3) we will use a fractional
version of the weak and strong maximum principles and a Hopf-type Lemma for antisymmetric
s-harmonic functions.

For u, v ∈ Hs(Rn), we consider the bilinear form induced by the fractional Laplacian

E(u, v) :=
cn,s
2

∫
Rn

∫
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy.

Let

Ds(Ω) := {u : Rn → R measurable : E(u, ϕ) is finite in Lebesgue sense for every ϕ ∈ Hs
0(Ω)} ,

where
Hs

0(Ω) := {u ∈ Hs(Rn) : u = 0 on Rn \ Ω}.

See e.g. [DNPV12b, Gri11] and the references therein for further information about fractional
functional spaces.

Given g ∈ L2(Ω) we say that a function u ∈ Ds(Ω) is a solution of{
(−∆)su = g in Ω,

u = 0 in Rn \ Ω,
(3.1)

if for all ϕ ∈ Hs
0(Ω) we have

E(u, ϕ) =

∫
Ω

g(x)ϕ(x) dx.

It will be useful to introduce the notion of entire antisymmetric supersolution. Let H ⊂ Rn be
a half space and let A be an open set with A ⊂ H. Given g̃ ∈ L2(A) we say that v ∈ Ds(A) is an
entire antisymmetric supersolution3 of (−∆)sv = g̃ in A, if the following conditions hold:

• v is a supersolution of (−∆)sv = g̃ in A, that is, for all ϕ ∈ Hs
0(A), ϕ ≥ 0 we have

E(v, ϕ) ≥
∫
A

g̃(x)ϕ(x) dx,

• v ≥ 0 in H \A and v is antisymmetric with respect to ∂H.

We are now ready to prove Theorem 1.1.
3Since we are going to apply the method of moving planes, the set A will typically be the intersection between

the set Ω and a half space, and the function v will be the difference between the solution u of (3.1) and its reflection
with respect to an hyperplane.
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Proof of Theorem 1.1. We apply the method of moving planes to the set G. Let e ∈ Sn−1 be a fixed
direction. Without loss of generality, we can assume that e = e1 and that the critical hyperplane
T goes through the origin (that is, λe = 0). We call H− := {x1 < 0} and consider the function

v(x) := u(x)− u(Q(x)) for x ∈ Rn,

where Q : Rn → Rn is the reflection with respect to T . We have
(−∆)sv = 0 in Q(Ω̂),

v ≥ 0 in H− \Q(Ω̂),

v(Q(x)) = −v(x) for every x ∈ Rn.

Thus, v is an entire antisymmetric supersolution on Q(Ω̂). By the weak maximum principle
(see [FJ15, Proposition 3.1]) we know that v ≥ 0 in H−. The strong maximum principle (see [FJ15,
Corollary 3.4]) then implies that either v > 0 in Q(Ω̂) or v ≡ 0 in Rn. We will show that the first
possibility cannot occur.

Assume by contradiction that v > 0 in Q(Ω̂). We need to distinguish between the two possible
critical cases.

Case 1 - since both P and P ′ belong to ∂G and (1.3) holds, we immediately get that

v(P ) = u(P )− u(P ′) = 0,

which is already a contradiction.

Case 2 - in this case the critical hyperplane T = {x1 = 0} is orthogonal to ∂G at some point
Q = (0, Q2, . . . , Qn) and therefore (1.3) ensures that

∂1v(Q) = 0. (3.2)

On the other hand, Lemma 2.1 implies the following Hopf-type inequality

∂1v(Q) < 0, (3.3)

which contradicts (3.2) and hence (1.3). Indeed, setting z = (−R/4, Q2, . . . , Qn) and x = xt =
(−t, Q2, . . . , Qn) ∈ BR/4(z), we have that

v(xt)

−t
≥ − 4

RK
v(z), (3.4)

where K > 1 is a constant only depending on n and s. Being z ∈ Q(Ω̂), we have that v(z) > 0, and
by letting t go to 0 (3.3) follows by (3.4).

This implies that G (and hence Ω) is symmetric with respect to the direction e. Since the
direction e is arbitrary, we easily obtain that G (and hence Ω) is a ball.

An alternative approach to the Hopf-type inequality (3.3) will be developed in a forthcoming
manuscript [DPTV22].
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4 A quantitative maximum principle
The following lemma is a quantitative version of [FJ15, Proposition 3.3]. To state it, we adopt the
notion of distance between two sets, say X and Y , defined by

dist(X,Y ) := inf
{
|x− y|, x ∈ X, y ∈ Y

}
.

Lemma 4.1. Let B ⊂ H− be a ball of radius R > 0 such that dist(B,H+) > 0. Let v ∈ Cs(B) be
an entire antisymmetric supersolution of{

(−∆)sv = 0 in B,

v ≥ 0 in H−.

Let K ⊂ H− be a bounded set of positive measure such that K ⊂ (H− \ B) and infK v > 0. Then
we have that

v ≥ C
[
dist(K,H+) |K| inf

K
v
]
ψB in B, (4.1)

where ψB is defined in (1.4), with

C :=
2(n+ 2s)C(n, s) dist(B,H+)n+2s+1(

dist(B,H+)n+2s + C(n, s) |B| γn,sR2s
)(

diam(B) + diam(K) + dist(Q(K), B)
)n+2s+2 .

Proof. We define

w(x) := ψB(x)− ψQ(B)(x) + α1K(x)− α1Q(K)(x) for x ∈ Rn

where α > 0 is a parameter to be set later on, ψB is the solution of the fractional torsion problem
in B and 1A is the characteristic function of a given set A. A direct computation shows that
w ∈ Ds(B).

The function w is antisymmetric and for any nonnegative test function ϕ ∈ Hs
0(B) we have

E(w,ϕ) = E(ψB , ϕ)− E(ψQ(B), ϕ) + α E(1K , ϕ)− α E(1Q(K), ϕ)

=

∫
B

ϕ(x)dx+ C(n, s)

∫
B

∫
Q(B)

ψQ(B)(y)ϕ(x)

|x− y|n+2s
dydx

− α C(n, s)

∫
B

∫
K

ϕ(x)

|x− y|n+2s
dydx+ α C(n, s)

∫
B

∫
Q(K)

ϕ(x)

|x− y|n+2s
dydx

≤
∫
B

ϕ(x)dx

[
κ− α C(n, s)

∫
K

(
1

|x− y|n+2s
− 1

|x− y′|n+2s

)]
,

where

κ = κ(n, s,B) = 1 + C(n, s) |B| sup
B
ψB sup

x∈B,y∈H+

1

|x− y|n+2s
< +∞.

If we set

C1 = C1(n, s,K,B) = C(n, s) |K| inf
x∈B,y∈K

(
1

|x− y|n+2s
− 1

|x− y′|n+2s

)
> 0, (4.2)
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then
E(w,ϕ) ≤

∫
B

ϕ(x)(κ− αC1).

By choosing α in such a way that κ− αC1 ≤ 0, we get (−∆)sw ≤ 0 in B.
For concreteness, we can thus choose

α :=
κ

C1

to have the previous argument in place and then set

τ := inf
K

v

α
> 0

and define
ṽ(x) := v(x)− τw(x)

for every x ∈ Rn. Recalling that w is antisymmetric and that w ≡ 0 on H− \ (B ∪K) we have{
(−∆)sṽ ≥ 0 in B
ṽ ≥ 0 in H− \B.

From the weak maximum principle we then get that ṽ ≥ 0 in B and, in particular,

v ≥ τψB in B. (4.3)

For every x ∈ B and every y ∈ K we compute

1

|x− y|n+2s
− 1

|x− y′|n+2s
=
n+ 2s

2

∫ |x−y′|2
|x−y|2

t−
n+2s+2

2 dt

≥ n+ 2s

2

(
|x− y′|2 − |x− y|2

)
|x− y′|−(n+2s+2)

≥ n+ 2s

2
4x1y1|x− y′|−(n+2s+2).

Moreover, for all x ∈ B and y ∈ K,

|x− y′| ≤ diam(B) + diam(K) + dist(Q(K), B)

and consequently

1

|x− y|n+2s
− 1

|x− y′|n+2s
≥ 2(n+ 2s)dist(B,H+) dist(K,H+)(

diam(B) + diam(K) + dist(Q(K), B)
)n+2s+2 .

Hence, by (4.2),

C1 ≥
2(n+ 2s)C(n, s) |K|dist(B,H+) dist(K,H+)(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2
.

As a result,

τ =
C1

κ
inf
K
v ≥ 2(n+ 2s)C(n, s) |K|dist(B,H+) dist(K,H+)

κ
(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2 inf
K
v.
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We also observe, owing to (1.4), that

sup
B
ψB(x) = γn,sR

2s

and therefore

κ = 1 + C(n, s) |B| γn,sR2s sup
x∈B,y∈H+

1

|x− y|n+2s

≤ 1 +
C(n, s) |B| γn,sR2s

dist(B,H+)n+2s

=
dist(B,H+)n+2s + C(n, s) |B| γn,sR2s

dist(B,H+)n+2s
.

Accordingly,

τ ≥ 2(n+ 2s)C(n, s) |K|dist(B,H+)n+2s+1 dist(K,H+)(
dist(B,H+)n+2s + C(n, s) |B| γn,sR2s

)(
diam(B) + diam(K) + dist(Q(K), B)

)n+2s+2 inf
K
v.

Thus, the desired conclusion follows from (4.3).

5 Almost symmetry in one direction
As customary, we say that a bounded domain Ω ⊂ Rn satisfies the uniform interior ball condition
if there exists a radius rΩ > 0 such that for every point x0 ∈ ∂Ω we can find a ball Bi ⊂ Ω of radius
rΩ with Bi ∩ Ωc = {x0}.

In the next subsection, we collect some useful technical lemmas which hold true for domains
satisfying such a condition.

5.1 Preliminaries: some results for domains satisfying the uniform inte-
rior ball condition

As noticed in [CPY22, MP23], the following simple explicit bound for the perimeter holds true.

Lemma 5.1 (A general simple upper bound for the perimeter, [CPY22, MP23]). Let D ⊂ Rn be
a bounded domain with boundary of class C1,α, with 0 < α ≤ 1. If D satisfies the uniform interior
ball condition with radius rD, the we have that

|∂D| ≤ n|D|
rD

. (5.1)

Proof. By following [MP23], the desired bound can be easily obtained by considering the solution
f ∈ C1,α(D) to

∆f = n in D, f = 0 on ∂D,

and putting together the identity

n|D| =
∫
∂D

∂νf dHn−1, where ∂ν denotes the outer normal derivative,
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with the Hopf-type inequality
∂νf ≥ rD,

which can be found in [MP19, Theorem 3.10].
We mention that a more general version of the bound (5.1) remains true even without assuming

the uniform interior ball condition, at the cost of replacing the radius rD of the ball condition
with a parameter associated to the (weaker) pseudoball condition, which is always verified by
C1,α domains: see [CPY22, Remark 1.1] and the last displayed inequality in the proof of [CPY22,
Corollary 2.1].

The previous result is useful to prove the following.

Lemma 5.2. Let Ω ⊂ Rn be a bounded domain with ∂Ω of class C2. For δ > 0, we set

Aδ := {x ∈ Ω | dist(x, ∂Ω) < δ}. (5.2)

Then, we have that

|Aδ| ≤ c δ, with c :=
2n|Ω|
rΩ

, (5.3)

where rΩ is the radius of the uniform interior ball condition of Ω.

We recall that if a domain has boundary of class C2, then it satisfies a uniform interior ball
condition.

Proof of Lemma 5.2. We set d∂Ω(x) := dist(x, ∂Ω) for x ∈ Ω. For δ ≥ 0, we define

Vδ := {x ∈ Ω | d∂Ω(x) > δ} and Γδ := {x ∈ Ω | d∂Ω(x) = δ} .

It is well-known that d∂Ω ∈ C2(ArΩ) (see, e.g., [GT77, Lemma 14.16]).
We first prove the claim in the case 0 ≤ δ ≤ rΩ/2. From the coarea formula we obtain

|Aδ| =
∫
Aδ

1 dx =

∫
Aδ

|∇d∂Ω(x)| dx =

∫ δ

0

(∫
Aδ∩d−1

∂Ω(t)

dHn−1

)
dt =

∫ δ

0

|Γt| dt. (5.4)

Since t ≤ δ ≤ rΩ/2, we have that Vt is a bounded domain satisfying the uniform interior touching
ball condition with radius rΩ/2, and with boundary Γt of class C2. Thus, we can apply Lemma 5.1
with D := Vt to get that

|Γt| ≤
2n|Vt|
rΩ

≤ 2n|Ω|
rΩ

, (5.5)

where the last inequality follows by the inclusion Vt ⊆ Ω. Combining (5.4) with (5.5) immediately
gives (5.3), for any 0 ≤ δ ≤ rΩ/2.

On the other hand, if δ ≥ rΩ/2, we easily find that

|Aδ| ≤ |Ω| ≤
[

2|Ω|
rΩ

]
δ,

where the first inequality follows by the inclusion

Aδ ⊆ Ω, for any δ ≥ 0.

Thus, (5.3) still holds true.
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We now detect an optimal growth of the solution to (1.2) from the boundary, by generalizing
[MP20, Lemma 3.1] to the fractional setting.

Lemma 5.3. Let u satisfy (1.2) and let γn,s be the constant defined in (1.5). Then,

u(x) ≥ γn,s dist(x, ∂Ω)2s for every x ∈ Ω. (5.6)

Moreover, if Ω is of class C1 and satisfies the uniform interior sphere condition with radius rΩ,
then it holds that

u(x) ≥ γn,s rsΩ dist(x, ∂Ω)s for every x ∈ Ω. (5.7)

Proof. Let x ∈ Ω and set r := dist(x, ∂Ω). We consider

ψ(y) := γn,s
(
r2 − |y − x|2

)s
+
,

which satisfies the fractional torsion problem in Br(x), namely{
(−∆)sψ = 1 in Br(x),

ψ = 0 on Rn \Br(x).
(5.8)

By the comparison principle (see [FJ15, Remark 3.2]), we have that u ≥ ψ on Br(x). In particular,
at the center x of Br(x), we have that

u(x) ≥ ψ(x) = γn,s dist(x, ∂Ω)2s,

and (5.6) follows.
Notice that (5.7) follows from (5.6) if dist(x, ∂Ω) ≥ rΩ. Hence, from now on, we can suppose

that
dist(x, ∂Ω) < rΩ. (5.9)

Let x̄ be the closest point in ∂Ω to x and call B̃ ⊂ Ω the ball of radius rΩ touching ∂Ω at x̄ and
containing x. Up to a translation, we can always suppose that

the center of the ball B̃ is the origin. (5.10)

Now, we let ψ̃ be the solution of (5.8) in B̃, that is ψ̃(y) := γn,s
(
r2
Ω − |y|2

)s
+
. By comparison

([FJ15, Remark 3.2]), we have that u ≥ ψ̃ in B̃, and hence, being x ∈ B̃,

u(x) ≥ γn,s (r2
Ω − |x|2)s+ = γn,s (rΩ + |x|)s(rΩ − |x|)s+ ≥ γn,s rsΩ (rΩ − |x|)s. (5.11)

Moreover, from (5.10),
rΩ − |x| = dist(x, ∂Ω).

This and (5.11) give (5.7), as desired.
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5.2 Almost symmetry in one direction
From now on, we let Ω := G+BR(0), with G ⊆ Rn bounded, with ∂G of class C1 and ∂Ω of class
C2.

Remark 5.4 (On the constants in the quantitative estimates). The constants in all of our quanti-
tative estimates can be explicitly computed and only depend on n, s, R, and diam(Ω). In some of
the intermediate results, the parameter |Ω| may appear. It is clear that such a parameter can be
removed thanks to the bounds

ωn
n
Rn ≤ |Ω| ≤ ωn

n
diam(Ω)n, where

ωn
n

is the volume of the unit ball in Rn, (5.12)

which easily hold true in light of the monotonicity of the volume with respect to inclusion.
We remark that the estimates of the previous subsection also depend on the radius rΩ of the

uniform interior ball condition associated to Ω. Nevertheless, from now on, we have that

rΩ := R, (5.13)

by the definition of Ω := G+BR(0)

We apply the method of moving planes to the set G. Hence, we fix a direction e = e1 and assume
the associated critical hyperplane to be T = {x1 = 0}, with Q : Rn → Rn, x 7→ x′ the reflection
with respect to T . For the proofs of the next two lemmas we will use the following notation: we
set for t ≥ 0

Gt := G+Bt(0), Ĝt := Gt ∩H+, G−t := Gt ∩H− Ut := Q(Ĝt). (5.14)

Note that Ω = GR.

Let u ∈ C2(Ω) ∩ C(Rn) be a solution of (1.2). For every x ∈ Rn, we set

v(x) := u(x)− u(x′) .

Lemma 5.5. Given P ∈ UR with B = BR/8(P ) such that dist(B, ∂UR) ≥ R/8, we have that

|Ω− \ UR| ≤ C̃ v(P )
1

2+s , (5.15)

where C̃ > 0 is an explicit constant depending only on n, s, R, and diam(Ω).

Proof. For δ ≥ 0, we set Kδ := (Ω− \ UR) \ (Eδ ∪ Fδ), where

Eδ := Aδ ∩ (Ω− \ UR) with Aδ as defined in (5.2),

Fδ := {x ∈ Ω− \ UR : dist(x, T ) < δ}.

With our choice of B clearly dist(B,H+) ≥ dist(B, ∂UR) ≥ R/8 and therefore, an application
of Lemma 4.1 with B := BR/8(P ) and K := Kδ gives that

v ≥
?

C
[
dist(Kδ, H

+) |Kδ| inf
Kδ

v
]
ψB in B, (5.16)
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holds true for a suitable explicit
?

C > 0, depending only on n, s, R, and diam(Ω). Here, we used
that in the present situation K ⊂ Ω and B ⊂ UR.

Now looking at Kδ we have Kδ ⊆ (Ω− \ UR) ⊆ H− and so dist(Kδ, B) ≥ R/8. Moreover, since
Kδ ⊆ (G−R−δ \UR) we have that v(x) = u(x) > 0 for every x ∈ Kδ; hence, (5.7) and (5.13) give that

inf
K
v ≥ [γn,sR

s] δs. (5.17)

Also, since Kδ ⊆ (Ω− \ UR) \ Fδ, then

dist(Kδ, H
+) ≥ δ. (5.18)

Clearly,
|Kδ| = |Ω− \ UR| − |Eδ ∪ Fδ| ≥ |Ω− \ UR| − (|Eδ|+ |Fδ|).

Since Eδ ⊆ Aδ, Lemma 5.2 gives that

|Eδ| ≤
[

2n|Ω|
R

]
δ,

where we also used (5.13). Also, by definition of Fδ, it is trivial to check that

|Fδ| ≤ diam(Ω)n−1δ.

Putting together the last three displayed formulas we conclude that

|Kδ| ≥ |Ω− \ UR| − c̃ δ, with c̃ :=
2ωndiam(Ω)n

R
+ diam(Ω)n−1. (5.19)

Here, we also used the second inequality in (5.12) to remove the dependence on |Ω| in the constant
c̃.

Putting together (5.16), (5.17), (5.18), (5.19), and that ψB(P ) = γn,s(R/8)2s (by (1.4) with
x0 := P ), we get that

v(P ) ≥
??

C δ1+s
(
|Ω− \ UR| − c̃ δ

)
with

??

C :=
?

C [γn,sR
s] (R/8)2s γn,s,

that is:
|Ω− \ UR| ≤

v(p)
??

C
δ−(1+s) + c̃ δ.

By minimizing in δ the right-hand side of the last inequality, we can conveniently choose

δ :=

[
(1 + s)v(p)

??

C c̃

] 1
2+s

(5.20)

and obtain that (5.15) holds true with

C̃ :=

[
(1 + s)c̃1+s

??

C

] 1
2+s

.
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The next lemma uses the previous result to get a stability estimate in one specific direction.

Lemma 5.6 (Almost symmetry in one direction). We have that

|Ω \Q(Ω)| ≤ C [u]
1

2+s

∂G , (5.21)

where C > 0 is an explicit constant only depending on n, s, R, and diam(Ω).

Proof. We apply the method of moving planes to G in the direction e1. We need to distinguish
between some cases.
Case 1 - U0 is internally tangent to G at a point P which is not on T . We distinguish two subcases,
according to the distance of P from T .

Case 1a - We assume dist(P, T ) > R/8. Since P ∈ ∂G ∩ ∂U0 we have

v(P ) = u(P )− u(P ′) ≤ [u]∂G diam(Ω).

We then apply Lemma 5.5 to obtain that

|Ω− \ UR| ≤ C̃ diam(Ω)
1

2+s [u]
1

2+s

∂G .

Case 1b - P ∈ ∂G ∩ ∂U0 such that dist(P, T ) ≤ R/8.
From the definitions of v and [u]∂G, we have that

v(P )

(−P1)
=

2(u(P )− u(P ′))

dist(P, P ′)
≤ 2[u]∂G, (5.22)

where we adopted the notation P = (P1, P2, . . . , Pn).
As noticed in item (ii) of Lemma A.1, we have that BR(P ) ⊂ UR ∪ [Ω ∩ (H+ ∪ T )].
We set P̂ := (0, P2, . . . , Pn) the projection of P on the hyperplane T . We then set P :=

(−R/4, P2, . . . , Pn) so that −P 1 = dist(P , T ) = R/4. Using Lemma 2.1 with BR := BR/2(P̂ ), we
see that

4

R
v(P ) =

v(P )

(−P )1

≤ K v(P )

(−P1)
. (5.23)

Putting together (5.22) and (5.23) gives that

v(P ) ≤ R

2
K[u]∂G,

and hence an application of Lemma 5.5 with P := P leads to

|Ω− \ UR| ≤ C̃
(
R

2
K

) 1
2+s

[u]
1

2+s

∂G . (5.24)

Case 2 - T is orthogonal to the boundary of G at some point Q.
Again, in light of item (ii) of Lemma A.1, we have that BR(Q) ⊂ UR ∪ [Ω ∩ (H+ ∪ T )].
We choose P := (−R/4, Q2, . . . , Qn) so that −P 1 = dist(P , T ) = R/4.
Using Lemma 2.1 with BR := BR(Q), for every y = (y1, Q2, . . . , Qn) ∈ BR/4(P ) we obtain that

v(P )

(−P )1

≤ K v(y)

(−y1)
≤ K [u]∂G,
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and hence
v(P ) ≤ R

4
K [u]∂G.

Again, we apply Lemma 5.5 with P := P , and we get that

|Ω− \ UR| ≤ C̃
(
R

4
K

) 1
2+s

[u]
1

2+s

∂G .

In all cases, (5.21) holds true with

C := C̃

(
max

{
diam(Ω),

R

2
K

}) 1
2+s

.

This completes the proof.

6 Stability result
For the proof of the following lemma we closely follow [CFMN18, Lemma 4.1]. The idea is the
following: for a given direction e ∈ Sn−1 we slice the set Ω in a (finite number of) sections depending
on the critical value λe, using the almost symmetry result in one direction of the previous section
(Lemma 6.1). This together with a simple observation on set reflections leads to an estimate on
λe = dist(0, T e).

Lemma 6.1. Let ε := min{1/4, 1/n} |Ω|/C with C as in Lemma 5.6. Assume that

[u]
1
s+2

∂G ≤ ε (6.1)

and suppose that the critical hyperplanes with respect to the coordinate directions T ej coincide with
{xj = 0} for every j = 1, . . . , n. For a fixed direction e ∈ Sn−1 we have

|λe| ≤ Ĉ [u]
1
s+2

∂G (6.2)

where Ĉ = 4 (n+ 3) diam(Ω)
|Ω| C > 0.

Proof. We set Ω0 := {−x | x ∈ Ω}. Since Ω0 can be obtained via composition of the n reflections
with respect to the hyperplanes T ej for j = {1, . . . , n}, by applying Lemma 5.6 n times with respect
to the coordinate directions we obtain

|Ω4Ω0| ≤ nC [u]
1
s+2

∂G , (6.3)

where we define the symmetric difference between two sets A and B as A4B := (A \B)∪ (B \A).
Indeed, we first notice that

|Ω4Ω0| = 2 |Ω \ Ω0|.

Moreover, we have that

|Ω \ Ω0| ≤ |Ω \Qn(Qn−1(. . . (Q1(Ω)) . . . )| ≤ |Ω \Qn(Ω)|+ |Qn(Ω) \Qn(Qn−1(. . . (Q1(Ω)) . . . )|,
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where Qj = Qej the reflection with respect to the critical value in the coordinate direction ej , for
j from 1 to n. Now observing that

|Qn(Ω) \Qn(Qn−1(. . . (Q1(Ω)) . . . )| = |Qn
(

Ω \ (Qn−1(. . . (Q1(Ω)) . . . )
)
|,

using the estimate in Lemma 5.6 and iterating the argument we obtain (6.3).

Now, assume λe > 0.
We notice that Λe ≤ diam(Ω). In fact, if Λe > diam(Ω), then x · e ≥ 0 for every x ∈ Ω, and

hence
|Ω∆Ω0| = 2|Ω|.

By using the last identity with (6.3), we would find

2|Ω| ≤ nC [u]
1
s+2

∂G ,

which contradicts (6.1).
Now let Ω′ = Qe(Ω) be the reflection of Ω about the critical hyperplane T e. Using Lemma 5.6

in the direction e we get
|Ω4Ω′| ≤ C [u]

1
s+2

∂G . (6.4)

Recalling that Eλ = {x · e > λ} and Ωλ = Ω ∩ Eλ, from (6.4) we get

|Ωλe | ≥
|Ω|
2
− C [u]

1
s+2

∂G . (6.5)

Moreover, if we set E0
λ := {−x | x ∈ Eλ} we also have

|Ω ∩ E0
λe | = |Ω

0 ∩ Eλe | ≥ |Ωλe | − |Ω4Ω0| ≥ |Ω|
2
− (n+ 1)C [u]

1
s+2

∂G ,

which together with (6.5) gives

| {x ∈ Ω | − λe ≤ x · e ≤ λe} | ≤ (n+ 2)C [u]
1
s+2

∂G . (6.6)

Since {λe ≤ x · e ≤ 3λe} is mapped into {|x · e| ≤ λe} by the reflection with respect to Te, using
again (6.3) and (6.6) we get

| {x ∈ Ω |λe < x · e < 3λe} | ≤ | {x ∈ Ω′ | |x · e| ≤ λe} | ≤

≤ | {x ∈ Ω | |x · e| ≤ λe} |+ |Ω4Ω′ | ≤ (n+ 3)C [u]
1
s+2

∂G .

Now let mk := | {x ∈ Ω | (2k − 1)λe ≤ x · e ≤ (2k + 1)λe} | with k ≥ 1. By the moving plane
procedure the set Ω ∩ Tµ (seen as a subset in Rn−1) is included in Ω ∩ Tµ′ , for every λe ≤ µ′ ≤ µ.
Therefore, mk is a decreasing sequence and for every k ≥ 1

mk ≤ m1 ≤ (n+ 3)C [u]
1
s+2

∂G .

Now letting k0 be the smallest natural number such that (2k0 + 1)λe ≥ Λe we get

|Ωλe | = |Ω ∩ {λe ≤ x · e ≤ Λe}| ≤
k0∑
k=1

mk ≤
1

2

(
Λe
λe

+ 1

)
(n+ 3)C [u]

1
s+2

∂G
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and therefore
|Ωλe |λe ≤ (n+ 3) diam(Ω)C [u]

1
s+2

∂G .

In light of (6.5) and (6.1), we have that |Ωλe | ≥ |Ω|/4, and (6.2) follows.

We are now ready to complete the proof of the stability result in Theorem 1.2.

Proof of Theorem 1.2. Up to a translation we can assume that the critical hyperplanes T ej with
respect to the n coordinate directions intersect at the origin. We choose ε > 0 as in the proof of
Lemma 6.1.

Let
ρmin := min

x∈∂Ω
|x|, ρmax := max

x∈∂Ω
|x|

and x, y ∈ ∂Ω such that |x| = ρmin and |y| = ρmax. Notice that, if x = y, then Ω is a ball, and the
theorem trivially holds true. Thus, we assume x 6= y and consider the unit vector

e =
x− y
|x− y|

and the corresponding critical hyperplane T e. The method of moving planes tells us that

dist(x, Te) ≥ dist(y, Te). (6.7)

Indeed, since x = y − te with t = |x − y|, the critical position can be reached at most when y′

coincides with x, which corresponds to the case in (6.7) where we have equality, while in every other
case a strict inequality holds. Therefore we get

ρmax − ρmin = |y| − |x| ≤ 2 dist(0, Te) = 2|λe|. (6.8)

Clearly, ρ(Ω) ≤ ρmax − ρmin. This, together with (6.8) and Lemma 6.1 gives (1.7) with C∗ = 2Ĉ,
if (6.1) holds true. On the other hand, if (6.1) does not hold, that is, if

[u]∂G > ε,

then it is trivial to check that

ρ(Ω) ≤ diam(Ω) ≤
[

diam(Ω)

ε
1
s+2

]
[u]

1
s+2

∂G ,

which is (1.7) with C∗ = diam(Ω)/ε1/(s+2).
That is, (1.7) always holds true with

C∗ = max

{
2Ĉ,

diam(Ω)

ε
1
s+2

}
.

As usual, the dependence on |Ω| appearing in Ĉ and ε can be removed by using (5.12).
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7 On the dependence of C∗ in Theorem 1.2 on the diameter
of Ω

A natural question is whether or not the quantitative stability result in Theorem 1.2 holds true
with a constant C∗ which is independent of the diameter of Ω.

We show with an explicit example that this is not possible. The example is interesting in itself
since it shows an “approximate bubbling” for remote balls. More specifically, we take L > 10, to be
taken as large as we wish in what follows and G := B1/4(−Le1)∪B1/4(Le1). We also take R := 3/4
in (1.1). In this way, we have that

Ω = B1(−Le1) ∪B1(Le1),

namely the domain is the union of two balls of unit radius located at mutual large distance.
We take u to be the corresponding torsion function as defined in (1.2). Let also v be the solution

of {
(−∆)sv = 1 in B1(−Le1),

v = 0 in Rn \B1(−Le1),
(7.1)

which we know to be radial.
We define w := u− v and we point out that

(−∆)sw = 0 in B1(−Le1),

w = u in B1(Le1),

w = 0 in Rn \
(
B1(−Le1) ∪B1(Le1)

)
.

From this and the fractional Schauder estimates in [DSV19, Theorem 1.3], used here with k := ` :=
0, f := 0 and

γ :=


11

10
if s 6∈

{
9

20
,

19

20

}
,

13

10
if s ∈

{
9

20
,

19

20

}
,

we conclude that

‖w‖C1(B1/2(−Le1)) ≤ C
∫
Rn\B1/2(−Le1)

|w(y)|
|y|n+2s

dy

≤ C

[
‖w‖L∞(B1(−Le1)\B1/2(−Le1)) +

∫
B1(Le1)

|u(y)|
|y|n+2s

dy

]

≤ C
[
‖w‖L∞(B1(−Le1)\B1/2(−Le1)) +

‖u‖L∞(Rn)

Ln+2s

]
,

(7.2)

with C > 0 depending only on n and s (which we feel free to rename from line to line).
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Also, using the fractional Poisson Kernel P of the ball B1 (see e.g. [Buc16, Theorem 2.10]), we
have that, for all x ∈ B1,

|w(x− Le1)| =

∣∣∣∣∣
∫
Rn\B1

P (x, y)w(y − Le1)dy

∣∣∣∣∣ ≤ C(1− |x|2)s
∫
Rn\B1

|w(y − Le1)|
(|y|2 − 1)s|x− y|n

dy

= C(1− |x|2)s
∫
B1(2Le1)

|u(y − Le1)|
(|y|2 − 1)s|x− y|n

dy ≤
C‖u‖L∞(Rn)

Ln+2s
.

As a result,

‖w‖L∞(B1(−Le1)) ≤
C‖u‖L∞(Rn)

Ln+2s
.

From this and (7.2) we arrive at

‖w‖C1(B1/2(−Le1)) ≤
C‖u‖L∞(Rn)

Ln+2s
. (7.3)

Now we take ϕ ∈ C∞(Rn, [0, 1]) such that ϕ = 1 in B2(−Le1) ∪ B2(Le1) and ϕ = 0 out-
side B3(−Le1) ∪B3(Le1). Thus, if x ∈ B1(−Le1) ∪B1(Le1),∫

Rn

ϕ(x)− ϕ(z)

|x− z|n+2s
dz =

∫
Rn

1− ϕ(z)

|x− z|n+2s
dz ≥

∫
B1((5−L)e1)∪B1((L−5)e1)

1− ϕ(z)

|x− z|n+2s
dz

=

∫
B1((5−L)e1)∪B1((L−5)e1)

1

|x− z|n+2s
dz ≥ c,

for some c > 0 depending only on n and s.
Accordingly, we can take ψ := Cϕ with C large enough such that (−∆)sψ ≥ 1. Thus, by the

maximum principle, we deduce that u ≤ ψ and accordingly ‖u‖L∞(Rn) ≤ C.
Plugging this information into (7.3) we conclude that

‖w‖C1(B1/2(−Le1)) ≤
C

Ln+2s
.

Since w is antisymmetric, this gives that

‖w‖C1(B1/2(−Le1)∪B1/2(Le1)) ≤
C

Ln+2s
.

Consequently, for all x 6= y ∈ ∂B1/4(−Le1) (as well as for all x 6= y ∈ ∂B1/4(Le1)),

|w(x)− w(y)|
|x− y|

≤ C

Ln+2s
.

Also, for all x ∈ ∂B1/4(−Le1) and y ∈ ∂B1/4(Le1), we have that |x− y| ≥ 1, therefore

|w(x)− w(y)|
|x− y|

≤ |w(x)|+ |w(y)| ≤ 2‖w‖L∞(B1/2(−Le1)∪B1/2(Le1)) ≤
C

Ln+2s
.

As a result,

[u]∂G ≤ [v]∂B1/4(−Le1)∪∂B1/4(Le1) + [w]∂B1/4(−Le1)∪∂B1/4(Le1)

= 0 + sup
x,y∈∂B1/4(−Le1)∪∂B1/4(Le1), x 6=y

|w(x)− w(y)|
|x− y|

≤ C

Ln+2s
.
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Hence, if (1.7) holded true with C∗ independent of the diameter of Ω, we would have that

ρ(B1(−Le1) ∪B1(Le1)) ≤ C

L
n+2s
s+2

.

For this reason, there would exist p ∈ B1(−Le1) ∪B1(Le1) and t, s > 0 such that

Bs(p) ⊂ B1(−Le1) ∪B1(Le1) ⊂ Bt(p)

and
|t− s| ≤ C

L
n+2s
s+2

.

But necessarily s ≤ 1 and t ≥ L, from which a contradiction plainly follows when L is sufficiently
large.

8 Generalizations of Theorems 1.1 and 1.2
In this section we briefly describe how Theorems 1.1 and 1.2 can be slightly generalized in the case
G has multiple connected components.

Let assume that Ω = G+BR, with G an open bounded set with

G = G1 ∪ . . . ∪Gm , (8.1)

where Gi, i = 1, . . . ,m, are the connected components of G and they are such that

(Gi +BR) ∩ (Gj +BR) = ∅ for i 6= j .

In this setting, the overdetermined condition (1.3) can be replaced by

u = ci on ∂Gi (8.2)

for some constants ci, i = 1, . . . ,m. We have the following generalization of Theorem 1.1.

Theorem 8.1. Let G be as in (8.1) with ∂G of class C1 and set Ω := G + BR. There exists a
solution u ∈ Cs(Ω) of (1.2) satisfying (8.2) if and only if G (and therefore Ω) is a ball.

Proof. The proof is completely analogous to the one of Theorem 1.1. This is due to the fact that,
when we apply the method of moving planes, by construction we have that the tangency point P of
Case 1 and its reflected P ′ belong to the same connected component of G. It is clear that in Case
2 the same holds.

We now discuss how to modify our argument for generalizing Theorem 1.2 in this setting. The
main point is to change the definition of deficit. Indeed, in Theorem 1.2 we used the deficit

[u]∂G := sup
x,y∈∂G, x6=y

|u(x)− u(y)|
|x− y|

.

It is clear that [u]∂G 6= 0 if ci 6= cj for some i and j in (8.2) and then [u]∂G cannot be used as a
deficit in this setting. For this reason, we consider the deficit

[u]∗ := sup
i=1,...,m

sup
x,y∈∂Gi
x 6=y

|u(x)− u(y)|
|x− y|

. (8.3)

By using this deficit we can argue as done for Theorem 1.2 and obtain the following result.
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Theorem 8.2. Let G be as in (8.1) with ∂G of class C1 and let Ω := G+BR. Assume that ∂Ω is
of class C2. Let u ∈ C2(Ω) ∩ C(Rn) be a solution of (1.2). Then, we have that

ρ(Ω) ≤ C∗ [u]
1
s+2
∗ , (8.4)

where [u]∗ is given by (8.3) and C∗ > 0 is an explicit constant only depending on n, s, R, and the
diameter diam(Ω) of Ω.

Proof. By using the remark noticed in the proof of Theorem 8.1, the proof of the theorem is the
same as the one of Theorem 1.2 and for this reason is omitted.
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Appendices

A Geometric remarks
The following technical lemma has been used in the proof of Lemma 5.6.

Lemma A.1. The following relations hold true.

(i) For any two open sets A and D in Rn, we have that

A+D = A+D,

where A is the closure of A.

(ii) In the notation introduced in (5.14), for any point x ∈ U0 := Q(G ∩H+), we have that

BR(x) ⊂ UR ∪
[
Ω ∩ (H+ ∪ T )

]
.

Proof. (i) The inclusion ⊂ is obvious. Let us prove ⊃. For any x ∈ A+D, we have that x = a+ d,
with a ∈ A and d ∈ D. Since D is open, there exists rd > 0 such that Brd(d) ⊂ D. Since a ∈ A, we
can find a ∈ A such that |a− a| < rd. Now we notice that

x = a+ d = a+ (a− a+ d).
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Since the term in brackets belongs to Brd(d) ⊂ D and a ∈ A, we thus have proved that x ∈ A+D.
(ii) For any x ∈ U0, we have that

BR(x) ⊂ U0 +BR(x)

by definition of +. An application of item (i) with A := U0 and D := BR(x) then gives that

BR(x) ⊂ U0 +BR(x).

The conclusion follows by noting that U0 ⊂ U0 ∪ [G ∩ (H+ ∪ T )].

B Motivation for the overdetermined problem in (1.2) and (1.3):
the fair shape for an urban settlement

A classical topic in social sciences consists in the definition and understanding of the complex
transition zones (usually called “fringes”) on the periphery of urban areas, see e.g. [Pry68]. The
rural-urban fringe problem aims therefore at detecting the transition in land use and demographic
characteristics lying between the continuously built-up areas of a central city and the rural hinter-
land: this problem is of high social impact, also given the possible incomplete penetration of urban
utility services in fringes.

Though the analysis of fringes is still under an intense debate and several aspects, especially the
ones related to high commercial and financial pressures, are still to be considered controversial, a
very simple model could be to limit our analysis to one of the features usually attributed to fringes,
namely that of low density of occupied dwellings, and relate it to some of the characteristics that are
considered inadequate for the fringe well-being such as “incomplete range and incomplete network
of utility services such as reticulated water, electricity, gas and sewerage mains, fire hydrants”, etc.,
as well as “accessibility of schools” [Pry68].

One can also assume that distance to urbanized areas is a major factor to be accounted for in
the analysis of the above features since “distance operates as a major constraint in shaping and
facilitating urban growth, and the friction of space experienced by the rural-urban fringe is but a
particular example of a principle generally accepted in human ecology and geography: the layout of
a metropolis – the assignment of activities to areas – tends to be determined by a principle which
may be termed the minimizing of the cost of friction” [Hai26, Pry68].

In this spirit, one can consider a model in which the environment is described by a domain Ω
and the density of population (or better to say the density of occupied dwellings) is modeled by a
function u. We assume that the population follows a nonlocal dispersal strategy modeled by the
fractional Laplacian (see e.g. [DGV21]) and that the environment is hostile (no dwelling possible
outside the domain Ω, with population “killed” if exiting the domain, corresponding to u = 0
outside Ω).

In this setting an equilibrium configuration for the population, subject to a growth modeled by
a function f(x, u), is described by the problem{

(−∆)su(x) = f(x, u(x)) for all x ∈ Ω,

u(x) = 0 for all x ∈ Rn \ Ω.
(B.1)

The case in which the birth and death rates of the population are negligible and the population is
subject to a constant immigration factor reduces f to a constant and therefore, up to a normaliza-
tion, the problem in (B.1) boils down to that in (1.2).
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One could also assume that there is a small quantity, say c > 0, that describes the density
threshold for an efficient network of utility services to develop: in this simplified model, the fringe
is therefore described by the area in which the values of u belong to the interval [0, c].

Clearly, the areas of major social hardship in this model would correspond to the points x of Ω in
the vicinity of the boundary and with u(x) ∈ [0, c]. Assuming distance to facilities to be the leading
factor towards well-being in this simplified model, the “fairest” configurations for the inhabitant of
the fringe could be that in which the most remote areas are all at the same distance, say R, to the
developed zone: one could therefore (at least for small c and correspondingly small R) adopt the
setting in (1.1).

In this framework, the above fairest condition would translate into the requirement that the
density threshold {u = c} would coincide with ∂G, leading naturally to the overdetermined condition
in (1.3).

In this spirit (and with a good degree of approximation) the overdetermined problem in (1.2)
and (1.3) would correspond to that of a population in a hostile environment, with negligible birth
and death rate and a constant immigration factor, that adopts a nonlocal dispersal strategy modeled
by (−∆)s, which aims at optimizing the rural-urban fringe in terms of equal maximal density to
the boundary (the results presented here would give that the optimizer is given by a round city).
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