n this paper we consider the (ray) representations of the group Aut of biholomorphisms of the Siegel upper half-space U defined by Us(φ)f=(f∘φ−1)(Jφ−1)s/2, s∈R, and characterize the semi-Hilbert spaces H of holomorphic functions on U satisfying the following assumptions: (a) H is strongly decent; (b) Us induces a bounded ray representation of the group Aff of affine automorphisms of U in H. We use this description to improve the known characterization of the semi-Hilbert spaces of holomorphic functions on U satisfying (a) and (b) with Aff replaced by Aut. In addition, we characterize the mean-periodic holomorphic functions on U under the representation U0 of Aff.

Invariant spaces of holomorphic functions on the Siegel upper half-space / M. Calzi, M.M. Peloso. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 285:5(2023 Sep 01), pp. 110013.1-110013.43. [10.1016/j.jfa.2023.110013]

Invariant spaces of holomorphic functions on the Siegel upper half-space

M. Calzi
Primo
;
M.M. Peloso
Ultimo
2023

Abstract

n this paper we consider the (ray) representations of the group Aut of biholomorphisms of the Siegel upper half-space U defined by Us(φ)f=(f∘φ−1)(Jφ−1)s/2, s∈R, and characterize the semi-Hilbert spaces H of holomorphic functions on U satisfying the following assumptions: (a) H is strongly decent; (b) Us induces a bounded ray representation of the group Aff of affine automorphisms of U in H. We use this description to improve the known characterization of the semi-Hilbert spaces of holomorphic functions on U satisfying (a) and (b) with Aff replaced by Aut. In addition, we characterize the mean-periodic holomorphic functions on U under the representation U0 of Aff.
Dirichlet space; Invariant spaces; Symmetric Siegel domains; Wallach set
Settore MAT/05 - Analisi Matematica
1-set-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
Invariant Spaces.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 657.48 kB
Formato Adobe PDF
657.48 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022123623001702-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 732.43 kB
Formato Adobe PDF
732.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/971302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact