n this paper we consider the (ray) representations of the group Aut of biholomorphisms of the Siegel upper half-space U defined by Us(φ)f=(f∘φ−1)(Jφ−1)s/2, s∈R, and characterize the semi-Hilbert spaces H of holomorphic functions on U satisfying the following assumptions: (a) H is strongly decent; (b) Us induces a bounded ray representation of the group Aff of affine automorphisms of U in H. We use this description to improve the known characterization of the semi-Hilbert spaces of holomorphic functions on U satisfying (a) and (b) with Aff replaced by Aut. In addition, we characterize the mean-periodic holomorphic functions on U under the representation U0 of Aff.
Invariant spaces of holomorphic functions on the Siegel upper half-space / M. Calzi, M.M. Peloso. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 285:5(2023 Sep 01), pp. 110013.1-110013.43. [10.1016/j.jfa.2023.110013]
Invariant spaces of holomorphic functions on the Siegel upper half-space
M. Calzi
Primo
;M.M. PelosoUltimo
2023
Abstract
n this paper we consider the (ray) representations of the group Aut of biholomorphisms of the Siegel upper half-space U defined by Us(φ)f=(f∘φ−1)(Jφ−1)s/2, s∈R, and characterize the semi-Hilbert spaces H of holomorphic functions on U satisfying the following assumptions: (a) H is strongly decent; (b) Us induces a bounded ray representation of the group Aff of affine automorphisms of U in H. We use this description to improve the known characterization of the semi-Hilbert spaces of holomorphic functions on U satisfying (a) and (b) with Aff replaced by Aut. In addition, we characterize the mean-periodic holomorphic functions on U under the representation U0 of Aff.File | Dimensione | Formato | |
---|---|---|---|
Invariant Spaces.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
657.48 kB
Formato
Adobe PDF
|
657.48 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022123623001702-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
732.43 kB
Formato
Adobe PDF
|
732.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.