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Abstract. In this paper we consider the (ray) representations of the group Aut of biholomorphisms of the

Siegel upper half-space U de�ned by Us(φ)f = (f ◦φ−1)(Jφ−1)s/2, s ∈ R, and characterize the semi-Hilbert
spaces H of holomorphic functions on U satisfying the following assumptions:
(a) H is strongly decent;
(b) Us induces a bounded ray representation of the group Aff of a�ne automorphisms of U in H.

We use this description to improve the known characterization of the semi-Hilbert spaces of holomorphic
functions on U satisfying (a) and (b) with Aff replaced by Aut.

In addition, we characterize the mean-periodic holomorphic functions on U under the representation U0

of Aff.

1. Introduction

Let D be the unit disc in C, and consider the (Möbius) group of its biholomorphisms, namely

Aut(D) :=

{
z 7→ α

z − b

1− zb
: α ∈ T, |b| < 1

}
. (1)

Many classical spaces of holomorphic functions on D enjoy the property of being preserved by composition
with elements of Aut(D). Notable examples include the space H∞(D) of bounded holomorphic functions on
D, the Bloch space

B(D) =
{
f ∈ Hol(D) : sup

z∈D
(1− |z|2)|f ′(z)| <∞

}
,

and the Dirichlet space

D(D) =

{
f ∈ Hol(D) :

∫
D

|f ′(z)|2 dz <∞
}
.

In these examples, not only the considered space is invariant under composition by the elements of Aut(D),
but also their natural seminorms are: namely, the sup-norm for H∞(D), the seminorm

f 7→ sup
z∈D

(1− |z|2)|f ′(z)|

for the Bloch space B(D), and the seminorm

f 7→
∫
D

|f ′(z)|2 dz

for the Dirichlet space D(D). These spaces are usually said to be Möbius-invariant in the literature, even
though there seems to be no general agreement about which axioms a Möbius-invariant space should satisfy.
For example, in [6, 9, 31] a semi-Banach space1 X of holomorphic functions on D is said to be Möbius-
invariant if the following hold:
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1A vector space endowed with a seminorm with respect to which it is complete.
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(1) X embeds continuously in B(D) (endowed with the non-Hausdor� topology de�ned above);
(2) there is a constant C ⩾ 1 such that for every f ∈ X and for every φ ∈ Aut(D), the function f ◦ φ

belongs to X, and ∥f ◦ φ∥X ⩽ C∥f∥X ;
(3) for every f ∈ X, the mapping Aut(D) ∋ φ 7→ f ◦ φ ∈ X is continuous.

Condition (2) is what properly states that X is Möbius-invariant, while condition (1) is imposed to prevent
pathological spaces, and condition (3) is only needed to simplifying some arguments, but may be weakened
without compromising the resulting theory. In fact, condition (3) is super�uous when the Banach space
associated with X (that is, X if X is Hausdor� and X/C otherwise) is re�exive (cf. [21, Corollary 4.4]);
moreover it prevents from considering some natural spaces, such as H∞(D) and B(D). Furthermore, no
condition is imposed to ensure that the constant functions belong to X, if X ̸= { 0 }, even though this fact
is tacitly assumed in [6, 9, 31]. We shall discuss this and other related issues in Section 3.

Conditions (2) and (3) may then be rephrased saying that the mapping

U0 : Aut(D) ∋ φ 7→ [f 7→ f ◦ φ−1] ∈ L (Hol(D))

induces a continuous bounded representation of Aut(D) in X.
We also remark that [33] shows that, assuming condition (2) to hold, condition (1) is equivalent to

assuming that either X = { 0 } or X admits a decent continuous linear functional, that is, a continuous
linear functional which is continuous for the topology of compact convergence on D (or, equivalently, which
extends to a continuous linear functional on Hol(D)). Thus, this condition may be seen as a rather natural
replacement for the condition that X should embed continuously in Hol(D), which nonetheless is only
available when X is Hausdor�. These conditions were later developed in [8, 4] in order to deal with more
general contexts, but remain essentially analogous.

More recently, in [1] a di�erent notion of Möbius invariant spaces was introduced (actually, [1] deals with
some suitable weighted action of Aut(D) on Hol(D) which we shall describe below, but we shall translate
their de�nitions in our context for the sake of simplicity). First of all, because of the slightly di�erent
context considered in [1], only Banach spaces are considered. Then, a `conformally invariant space of index
0', according to [1], is a Banach space X of holomorphic functions such that the following hold:

(1′) X embeds continuously in Hol(D);
(2) there is a constant C ⩾ 1 such that for every f ∈ X and for every φ ∈ Aut(D), the function f ◦ φ

belongs to X, and ∥f ◦ φ∥X ⩽ C∥f∥X ;
(3′) for every R > 1, Hol(RD) ⊆ X.

We observe explicitly that (1′) is the natural replacement of (1) for Banach spaces. Notice that, in the
context actually considered in [1], this requirement is perfectly natural: reasonably extending the above
de�nition to semi-Banach spaces would not provide any further examples as a consequence of Remark 6.3.
As for what concerns condition (3′), it is essentially weaker than condition (3): if condition (3) holds, then
f(R · ) ∈ X for every f ∈ X and for every R ∈ (0, 1) (see the proof of [8, Proposition 1] or [21, Proposition
4.3]). In addition, if X contains both non-trivial constant and non-constant functions, then X is dense in
Hol(D), so that we are not too far away from the requirement Hol(RD) ⊆ X for every R > 1.

In this paper, we shall follow a somewhat di�erent strategy. Indeed, we shall drop both conditions (3)
and (3′), as the former will be automatically satis�ed (cf. Proposition 2.14), while the latter will not always
be satis�ed, and does not seem to be of any use for our purposes. Since we shall also consider some weaker
versions of (2), which we will discuss later on, we shall replace (1) with the requirement that X should be
strongly decent. This condition means that the space of continuous linear functionals on X which extend to
continuous linear functionals on Hol(D) is dense in the weak dual topology of the dual X ′ of X. Assuming
X to be a semi-Banach space, this assumption is equivalent to the existence of a closed vector subspace V of
Hol(D) such that X ∩ V is the closure of { 0 } in X, and such that the canonical mapping X → Hol(D)/V
is continuous.

Proceeding further into this matter, we observe that there are several other Banach spaces of holomoprhic
functions on D on which Aut(D) has a natural isometric `weighted action'. For example, set, for every s ∈ R
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and for every φ ∈ Aut(D),

Ûs(φ)f = (f ◦ φ−1)(Jφ−1)s/2

for every f ∈ Hol(D), where Jφ−1 denotes the complex Jacobian of φ−1. Observe that, since D is convex,
the power (Jφ−1)s/2 may be de�ned as a holomorphic function on D. Nonetheless, unless s ∈ 2Z, this
power is only de�ned up to the multiplication by suitable unimodular constants, so that we only de�ne

Ûs(φ) as an element of L (Hol(D))/T. In other words, Ûs becomes a ray representation (cf. [15]) of Aut(D)

in Hol(D) instead of an ordinary one. It then makes sense to say that Ûs induces a bounded or isometric
ray representation in any semi-Banach space of holomorphic functions on D, but one cannot de�ne integral

operators of the form Ûs(f) for f ∈ L1(Aut(D)), even if the ray representation is continuous. In order

to circumvent this di�culty, one may lift Ûs to a continuous ordinary representation Ũs of the universal

covering group Ãut(D) in Hol(D), as we shall do in the sequel.
Then, for every p ∈ [1,∞) and for every s > 2/p, the weighted Bergman spaces2

Ap
s(D) :=

{
f ∈ Hol(D) :

∫
D

|f(z)|p(1− |z|2)ps/2−2 dz

}
are invariant under the action of Ũs with their norms (cf. Proposition 2.11). Notable examples arise when
p = 2, in which case A2

s(D) is a reproducing kernel Hilbert space (RKHS for short) of holomorphic functions
on D, that is, a Hilbert space which embeds continuously in Hol(D). More precisely, its reproducing kernel
is

Ks : (z, z
′) 7→ cs(1− zz′)−s

for a suitable cs > 0; this means that Ks( · , z) ∈ A2
s(D) and that

f(z) = ⟨f |Ks( · , z)⟩A2
s(D)

for every f ∈ A2
s(D) and for every z ∈ D.

From the viewpoint of the representation theory of the simple Lie group Aut(D) (and of its covering group

Ãut(D)), the representations Ũs of Ãut(D) in A2
s(D), for s > 1, are of particular importance, as they may

be identi�ed with the discrete series representations of Ãut(D) (cf. [37]). In other words, every irreducible

subrepresentation of the left regular representation of Ãut(D) in L2(Ãut(D)) is unitarily equivalent to one

of the representations Ũs in A2
s(D), s > 1.

Now, observe that saying that A2
s(D) is Ũs-invariant with its norm is equivalent to saying that [Ũs(φ)⊗

Ũs(φ)]Ks = Ks for every φ ∈ Ãut(D). In particular, the sesquiholomorphic function

Ks : (z, z′) 7→ (1− zz′)−s

satis�es [Ũs(φ)⊗ Ũs(φ)]Ks = Ks for every s ∈ R and for every φ ∈ Ãut(D). As a consequence, if Ks is the

reproducing kernel of some RKHS As, then As is Ũs-invariant with its norm. This is the case if and only if
Ks satis�es a suitable positivity condition, namely

N∑
j,k=1

αjαkKs(zj , zk) ⩾ 0

for every N ∈ N, for every z1, . . . , zN ∈ D, and for every α1, . . . , αN ∈ C, and this happens exactly when
s ⩾ 0 (cf. [37]). In this case, As is the completion of the vector subspace of Hol(D) generated by the Ks( · , z),
as z runs through D, endowed with the unique scalar product such that

⟨Ks( · , z)|Ks( · , z′)⟩As = Ks(z, z′)

2We remark explicitly that this parametrization of the weighted Bergman spaces is di�erent from the one we shall use in
the sequel.
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for every z, z′ ∈ D. Observe that As embeds canonically and continuously into Hol(D), so that we may
consider it as a vector subspace of Hol(D), endowed with a �ner topology. For example, A1 is the Hardy
space

H2(D) =

{
f ∈ Hol(D) : sup

r∈(0,1)

∫
T

|f(rz)|2 dz <∞

}
,

endowed with a proportional norm, while A0 is simply the space of constant functions. It is interesting to
observe that also a converse result holds: namely, if H is a non-trivial RKHS of holomorphic functions on

D and H is Ũs-invariant with its norm, then s ⩾ 0 and H = As with a proportional norm (cf. [7]). If we
momentarily ignore the problem of providing simpler descriptions for the spaces As, s ∈ (0, 1), these results

solve the problem of classifying Ũs-invariant RKHS of holomorphic functions on D. In particular, this tells

us that the Dirichlet space D(D), which is Ũ0-invariant with its natural seminorm, may not be endowed with

any �ner Ũ0-invariant norm for which D(D) embeds continuously in Hol(D). This naturally leads to the

problem of �nding and describing semi-Hilbert spaces of holomorphic functions on D which are Ũs-invariant
with their seminorms, and satisfy some additional assumptions such as (1) above (for s = 0) or the strong
decency condition we described earlier. To this end, we �rst observe that, if s ∈ −N, then the (1 − s)-th

order derivative intertwines Ũs and Ũ2−s, that is,

(Ũs(φ)f)
(1−s) = Ũ2−s(φ)f

(1−s)

for every f ∈ Hol(D) and for every φ ∈ Ãut(D) (cf. [4, Theorem 6.4]). Consequently, the semi-Hilbert space

Hs =
{
f ∈ Hol(D) : f (1−s) ∈ A2−s

}
is Ũs-invariant with its seminorm f 7→ ∥f (1−s)∥A2−s

for every s ∈ −N. Conversely, if H is a non-Hausdor�

non-trivial decent semi-Hilbert space of holomorphic functions which is Ũs-invariant with its seminorm,
then s ∈ −N and H embeds as a dense subspace of Hs, with a proportional seminorm (cf. [6, 8, 4] and
Theorem 4.3). Notice that, since Hs is not Hausdor�, it admits non-closed complete dense vector subspaces,

which are precisely the vector subspaces V such that V + { 0 }
Hs

= Hs, where { 0 }
Hs

denotes the closure
of { 0 } in Hs. We observe explicitly that we do not know whether Hs contains proper complete dense

Ũs-invariant vector subspaces.

These problems have been investigated also in di�erent contexts and generality. On the one hand, one
may consider invariant Banach (or semi-Banach) spaces of holomorphic functions instead of simply Hilbert
(or semi-Hilbert) spaces. As one may expect, in this case one cannot �nd a complete classi�cation, but
one may still �nd minimal and maximal spaces and study some general properties of invariant spaces.
Cf. [5, 9, 39, 31, 13, 1, 21] for more on this problem. On the other hand, one may replace the unit disc
D with more general domains, such as the unit ball in Cn (cf. [8, 39, 31, 3]), or more general irreducible
symmetric domains (cf. [25, 8, 2, 4, 11, 10, 38, 12, 20, 21]).

In this paper we consider a related problem. Our �rst aim was to provide a reasonable description
of invariant semi-Hilbert spaces on the unbounded realizations of irreducible symmetric domains as Siegel
domains of type II. For example, the natural Siegel domain associated with the unit disc D is the upper
half plane C+ = R + iR∗

+. Since we noticed that many of these spaces could be essentially characterized
requiring only the invariance under the action of the group of a�ne biholomorphisms, we decided to perform
a more detailed study of a�nely invariant semi-Hilbert spaces of holomorphic functions on symmetric Siegel
domains. In this paper we shall consider only rank 1 spaces, namely the Siegel upper half-spaces

Un+1 :=
{
(ζ, z) ∈ Cn+1 : Im z > |ζ|2

}
,

so that Un+1 is biholomorphic to the unit ball in Cn+1. Notice that this domain reduces to the upper
half-plane when n = 0. The �rst author will deal with more general domains in a forthcoming paper [20].
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Notice that the group Aff(Un+1) of a�ne biholomorphisms of Un+1 is particularly simple to describe

(cf. Lemma 2.1). In addition, the representation Ũs essentially induces the representation Us of Aff(Un+1)
de�ned by3

Us(φ)f = (f ◦ φ−1)|Jφ−1(0, i)|s/(n+2),

in the sense that Us(φ) di�ers from the various Ũs(ψ), for ψ ∈ Ãut(Un+1) acting as φ on Un+1, by a
unimodular constant.

As it turns out, the decency assumption, which was essentially (though not completely) su�cient in order

to deal with Ũs-invariant spaces, no longer seems to be su�cient for the study of Us-invariant spaces. This
is the reason that brought us to develop the notion of strongly decent spaces.

We shall therefore consider the following problem: `provide a description of the strongly decent semi-
Hilbert spaces in which Us induces a bounded representation of Aff(Un+1)'. In fact, we are able to provide
a reasonably complete classi�cation of these spaces, see Theorem 4.3 for the case n = 0 and Theorem 5.2 for
the case n ≥ 1. Explicitly, when n = 0, we shall prove the following result.

Theorem. Take s ∈ R and a strongly decent semi-Hilbert space H of holomorphic functions on C+. Assume
that Us induces a bounded (resp. isometric) representation of Aff(C+) in H. Then, there is k ∈ N such that
s+ 2k ⩾ 0 and such that H embeds as a dense subspace of{

f ∈ Hol(C+) : f
(k) ∈ As+2k(C+)

}
with an equivalent (resp. proportional) seminorm.

Here, As+2k(C+) denotes the RKHS of holomorphic functions on C+ whose reproducing kernel is (z, z′) 7→
[(z − z′)/(2i)]−s−2k. Notice that As+2k(C+) is Us+2k-invariant with its norm, so that it is canonically
isomorphic to the space As+2k described before. The case of semi-Hilbert spaces of holomorphic functions
on Un+1 is similar, but somewhat more complicated.

We shall then use the classi�cation of Us-invariant spaces to reobtain and slightly improve the classi�cation

of Ũs-invariant spaces.
Our techniques essentially rely on two ingredients: (1) a complete description of the closed Us-invariant (or,

equivalently, U0-invariant) vector subspaces of Hol(Un+1); (2) the intertwining properties of the derivatives
∂kz between the representations Us and Us+2k.

Concerning (1), we shall �rst show that every closed U0-invariant vector subspace V of Hol(Un+1) is the
closure of the set of polynomials contined in V (cf. Proposition 7.1). This result may be considered as
a complete description of mean-periodic functions in Hol(Un+1) (with respect to the action of Aff(Un+1)
induced by U0). We shall then provide a description of the U0-invariant vector spaces of holomorphic
polynomials on Hol(Un+1). This description, combined with the strong decency condition on H, will show
that H is determined by ∂k2H for some k ∈ N, in the sense that ∂k2H is a reproducing kernel Hilbert space
of holomorphic functions on Un+1 and H ∩ ker ∂k2 is the closure of { 0 } in H. Notice that this is rigorously
so when n = 0, while in the general case the situation is slightly more complicated. Then, (2) will imply
that ∂k2H is actually Us+2k-invariant, so that by a simple comparison between the reproducing kernels of
∂k2H and As+2k(C+) (when s+ 2k ⩽ 0), using the fact that Aff(Un+1) is amenable and acts transitively on
Un+1, we see that ∂

k
2H = As+2k(C+). When n = 0, this provides the desired description of the possible H,

whereas in the general case some further arguments are necessary.
Here is a plan of the paper. In Section 2, we shall review some basic facts on the group Aut(Un+1) of

biholomorphisms of Un+1 and some of its notable subgroups. We shall then review some weighted Bergman

and related spaces, and prove their Ũs-invariance. Finally, we shall discuss some properties of (strongly)
decent (and saturated) spaces in a general framework.

3We shall comment on the exponent s/(n+ 2) later on.
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In Section 3, we shall characterize the Us-invariant reproducing kernel Hilbert spaces of holomorphic
functions on Un+1 (cf. Theorem 3.3), and discuss the unitary equivalences between the associated unitary

representations of Aff(Un+1) (and Ãut(Un+1), whenevery possible), cf. Remark 3.4.
In Section 4, we shall characterize the strongly decent Us-invariant semi-Hilbert spaces of holomorphic

functions on U0 = C+ (cf. Theorem 4.3), and discuss the unitary equivalences between the associated unitary

representations of Aff(Un+1) (and Ãut(Un+1), whenevery possible), cf. Remark 4.4. In Section 5, we shall
perform a similar study in the general case (cf. Theorems 5.2 and 5.3, and Remark 5.4).

In Section 6, we shall trasfer the preceding results to the bounded setting, thus studying spaces of holo-
morphic functions on the unit ball Bn+1 of C

n+1 (cf. Proposition 6.4), as well as compare our strong decency
(and saturation) conditions with the ones appearing in the literature (cf. Proposition 6.2). Even though

the results on Ũs-invariant semi-Hilbert spaces of holomorphic functions on Bn+1 available in the literature

are fairly complete, the characterization of the Ũs-invariant semi-Hilbert spaces H of holomorphic functions

on Bn+1 for s < 0 and n > 0 under the sole assumption that Ũs induces a bounded (and not necessarily
isometric) representation in H which stems from Theorem 5.3 seems to be new.

Finally, in Section 7 we shall prove some general results on the closed Aff(Un+1)-U0-invariant vector
subspaces of Un+1. Since these facts are of independent interest and may be proved for general Siegel domains
(of type II) with no additional e�ort, we shall consider the general case instead of con�ning ourselves to the
domains Un+1.

2. Preliminaries

We denote by Bn+1 the unit ball in Cn × C, and by Un+1 the Siegel upper half-space

Un+1 :=
{
(ζ, z) ∈ Cn × C : Im z > |ζ|2

}
.

Notice that, when n = 0, B1 is the unit disc in C and U1 is the upper half-plane C+. Then, the Cayley
transform

C : Bn+1 ∋ (ζ, z) 7→
(

ζ

1− z
, i
1 + z

1− z

)
∈ Un+1,

with inverse

C−1 : Un+1 ∋ (ζ, z) 7→
(
2i

ζ

z + i
,
z − i

z + i

)
∈ Bn+1,

induces a biholomorphism between Bn+1 and Un+1.

2.1. Groups of Automorphisms. Given a domain D, we denote by Aut(D) the group of biholomorphisms
ofD, by Aff(D) the group of a�ne biholomorphisms ofD, and byGL(D) the group of linear biholomorphisms
of D.

It is known that the group Aut(Bn+1) is connected, and that it consists of fractional linear transformations
(cf., e.g., [28, Section 2.1] or [34, Chapter 2]). In particular, the stabilizer of 0 in Aut(Bn+1) is the unitary
group U(n+1), and is a maximal compact subgroup of Aut(Bn+1). When n = 0, Aut(B1) is given in (1). The
group of biholomorphisms Aut(U1) of U1 consists of fractional linear transformations, and may be described
as

Aut(U1) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

}
.

Let us now describe some notable subgroups of Aut(Un+1). First of all, when n > 0, consider the
Heisenberg group Hn := Cn ×R, endowed with the product

(ζ, x)(ζ ′, x′) := (ζ + ζ ′, x+ x′ + 2Im ⟨ζ|ζ ′⟩)

for every (ζ, x), (ζ ′, x′) ∈ Hn, which acts freely on Cn × C, Un+1, and simply transitively on ∂Un+1, by the
a�ne transformations:

(ζ, x) · (ζ ′, z′) := (ζ + ζ ′, x+ i|ζ|2 + 2i⟨ζ ′|ζ⟩)
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for every (ζ, x) ∈ H and for every (ζ ′, z′) ∈ Cn × C, where ⟨ · | · ⟩ denotes the (hermitian) scalar product on
Cn. With a slight abuse of notation, we denote by H0 the group R of horizontal translations on C+ = U1.
Then, for all n ≥ 0 we identify Hn with a subgroup of Aut(Un+1) by means of its action on Un+1.

Lemma 2.1. The following properties hold:

(i) (the group of linear automorphisms of Un+1)

GL(Un+1) =
{
(ζ, z) 7→ (RUζ,R2z) : R > 0, U ∈ U(n)

}
;

(ii) (the group of a�ne automorphisms of Un+1)

Aff(Un+1) = Hn ⋊GL(Un+1);

(iii) the group GT := Hn⋊
{
(ζ, z) 7→ (Rζ,R2z) : R > 0

}
is solvable and acts simply transitively on Un+1.

Proof. Assertion (ii) follows from [29, Proposition 2.1]. It is then clear that GT is the semi-direct prod-
uct of Hn and the (abelian) group Gδ :=

{
(ζ, z) 7→ (Rζ,R2z) : R > 0

}
of dilations of Un+1, so that it is

solvable. Since Hn acts simply transitively on the translates of ∂Un+1 and Gδ acts simply transitively on
{ (0, ih) : h > 0 }, (iii) follows.

Finally, observe that [29, Proposition 2.2] shows that GL(Un+1) consists of the linear automorphisms of
Cn×C of the form A×BC with A ∈ GL(Cn) and B ∈ GL(R) such that BR+ ⊆ R+ and ∥Aζ∥2 = B∥ζ∥2 for
every ζ ∈ Cn. Then, there is R > 0 such that Bx = R2x for every x ∈ R, and A = RU for some U ∈ U(n),
whence (ii). □

Proposition 2.2. The group Aut(Un+1) is generated by Aff(Un+1) and the inversion

ι : Un+1 ∋ (ζ, z) 7→
(
− iζ
z
,−1

z

)
∈ Un+1.

In addition, Aff(Un+1) is amenable.

Recall that a group H is amenable if it admits a right-invariant mean, that is, a linear functional
m : ℓ∞(H) → C such that m(χH) = 1 and m(f( ·h)) = m(f) for every f ∈ ℓ∞(H) and for every h ∈ H.
See [32] for several characterizations of amenability and a thorough treatment of this subject.

For future reference, let us also note that the complex Jacobian Jι of ι is

(Jι)(ζ, z) =
1

inzn+2
(2)

for every (ζ, z) ∈ D.

Proof. The �rst assertion follows, for example, from [14, Lemma 2.1], or [24, Theorem 6.1]. Concerning the
second assertion, observe that (i) and (ii) of Lemma 2.1 show that Aff(Un+1) is the semi-direct product of
the nilpotent Lie group Hn and the group GL(Un+1), which in turn is the direct product of an abelian group
(the group of the dilations) and the compact group U(n). The assertion then follows from [32, Propositions
12.1 and 13.4, and Corollary 13.5]. □

De�nition 2.3. We denote by Ãut(Un+1), or simply Ãut if there is no fear of confusion, the universal

covering of Aut(Un+1). We endow Ãut(Un+1) with the action on Un+1 induced by the natural action of

Aut(Un+1) on Un+1. For every s ∈ R, consider the continuous representation Ũs of Ãut(Un+1) in Hol(Un+1)
de�ned by

Ũs(φ)f(ζ, z) := f(φ−1(ζ, z))(Jφ−1)s/(n+2)(ζ, z), (3)

where (φ, (ζ, z)) 7→ (Jφ−1)s/(n+2)(ζ, z) may be (unambiguously) de�ned as a continuous function on the

simply connected manifold Ãut(Un+1) × Un+1, in such a way that (JI−1)s/(n+2)(0, i) = 1, where I denotes
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the identity in Ãut(Un+1).
4 In particular, (Jφ−1)s/(n+2) is holomorphic on Un+1 for every φ ∈ Ãut(Un+1)

and for every s ∈ R.
Notice that the subgroup GT de�ned in Lemma 2.1 (iii) is simply connected, so that it may be identi�ed

with a subgroup of Ãut(Un+1). Then, Ũs induces a representation Us of GT . Observe that

Us(φ)f(ζ, z) = f(φ−1(ζ, z))|(Jφ−1)s/(n+2)(0, i)|
for every φ ∈ GT , for every f ∈ Hol(Un+1), and for every (ζ, z) ∈ Un+1, and that the same expression may
be employed to de�ne a continuous representation Us of Aff(Un+1) in Hol(Un+1).

5

2.2. Bergman Spaces.

De�nition 2.4. For every p ∈ [1,∞] and for every s ∈ R, we de�ne

Lp
s(Un+1) :=

{
f measurable :

∫
Un+1

|f(ζ, z)|p(Im z − |ζ|2)ps−1 d(ζ, z) <∞

}
,

with the obvious modi�cation when p = ∞, that is,

L∞
s (Un+1) :=

{
f measurable : (ζ, z) 7→ (Im z − |ζ|2)sf(ζ, z) ∈ L∞ }

,

and Ap
s(Un+1) := Lp

s(Un+1) ∩Hol(Un+1).

Then, Ap
s(Un+1) is a Banach space, and embeds continuously into Hol(Un+1). It is a Hilbert space when

p = 2. In addition, Ap
s(Un+1) ̸= { 0 } if and only if s > 0 or p = ∞ and s ⩾ 0.

The reproducing kernel of A2
s(Un+1), s > 0, (the `weighted Bergman kernel') is

Ks : Un+1 × Un+1 ∋ ((ζ, z), (ζ ′, z′)) 7→ cs

(
z − z′

2i
− ⟨ζ|ζ ′⟩

)−(n+1+2s)

, (4)

where cs = (2s+n)···(2s)
4πn+1 . Notice that the power is well de�ned since Re

(
z−z′

2i − ⟨ζ|ζ ′⟩
)
> 0 for every

(ζ, z), (ζ ′, z′) ∈ Un+1. For simplicity of notation, we also write

ρ(ζ, z) = Im z − |ζ|2 (5)

so that Ks((ζ, z), (ζ, z)) = csρ(ζ, z)
−(n+1+2s).

We denote by Ps the corresponding projector (the `weighted Bergman projector'), so that

Psf(ζ, z) =

∫
Un+1

f(ζ ′, z′)Ks((ζ, z), (ζ
′, z′))(Im z′ − |ζ ′|2)2s−1 d(ζ ′, z′)

for every f ∈ Cc(Un+1) (say).
We shall now describe the spaces Ps′(L

p
s(Un+1)) for suitable values of s, s

′. In order to do that, we shall
need to construct some Besov spaces of analytic type on Hn and an associated extension operator.

De�nition 2.5. For every compact subset K of R∗
+, we de�ne SR∗

+
(Hn,K) as the image of the mapping

G : C∞
c (K) ∋ φ 7→

[
(ζ, x) 7→

∫ +∞

0

φ(λ)eλ(ix−|ζ|2) dλ

]
∈ S(Hn),

with the induced topology. We then de�ne SR∗
+
(Hn) and SR∗

+,L(Hn) as the inductive limits of the spaces

SR∗
+
(Hn,K) and S(Hn) ∗ SR∗

+
(Hn,K), respectively, as K runs through the set of compact subsets of R∗

+.

4The exponent s/(n+ 2) may seem peculiar at �rst, but may be justi�ed observing that Ũs(δR)f = (f ◦ δ−1
R )R−s for every

R > 0 and for every s ∈ R, identifying the (simply connected) group of the dilations δR : (ζ, z) 7→ (Rζ,R2z) with a subgroup

of Ãut(Un+1). Besides that, this de�nition is quite common in the literature since n + 2 may be interpreted as the `genus' of
Un+1 as a symmetric domain.

5Notice that, as long as φ ∈ GT , Jφ
−1 is positive on Un+1, so that the absolute value is redundant. If we extend Us to

Aff(Un+1), however, then the absolute value is necessary to make sure that Us is well de�ned when Aff(Un+1) ̸= GT , that is,
when n > 0.
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We de�ne S ′
R∗

+,L(Hn) as the dual of the conjugate of SR∗
+,L(Hn).

Observe that SR∗
+
(R) = SR∗

+,L(R) = F−1(C∞
c (R∗

+)) when n = 0. In this case, G is essentially the inverse

Fourier transform. Also in the general case one may interpret G (essentially) as the inverse Fourier transform,
cf. [22, Chapter 4] for more details.

In order to better explain the meaning of all these constructions, let us observe that Hn, identi�ed with
the boundary of Un+1, inherits the structure of a CR manifold. In other words, the complex tangent spaces
(that is, the largest complex vector subspaces of the real tanget spaces) of ∂Un+1 have all the same complex
dimension (namely, n). This is related to the fact that the left translations of Hn act on ∂Un+1 by a�ne bi-
holomorphisms. This CR structure then allows to de�ne CR functions on Hn, that is, functions which satisfy
the tangential Cauchy�Riemann equations. Then, the space SR∗

+,L(Hn) may be equivalently characterized

as the space of CR Schwartz functions on Hn whose `spectrum' is contained in R∗
+, where the spectrum

of a CR f ∈ S(Hn) may be de�ned as
⋃

ζ∈Cn Supp(F(f(ζ, · ))), where F denotes the (Euclidean) Fourier

transform in the second variable. It turns out that the elements of SR∗
+,L(Hn) may also be characterized

as the restrictions to Hn
∼= ∂Un+1 of a class of entire functions on Cn+1 which satisfy suitable growth and

decay conditions (in a Paley�Wiener�Schwartz fashion). The elements of SR∗
+
(Hn) then correspond to the

entire functions which depend only on the last variable. Cf. [18] for a more detailed discussion of this topic.
We denote by ⟨ · | · ⟩ the sesquilinear pairing between S ′

R∗
+,L(Hn) and SR∗

+,L(Hn), as well as the conjugate

of the pairing between SR∗
+,L(Hn) and S ′

R∗
+,L(Hn).

De�nition 2.6. Take p ∈ [1,∞] and s ∈ R. We de�ne Bs
p(Hn,R

∗
+) as the space of u ∈ SR∗

+,L(Hn) such

that ∑
j∈Z

2psj∥u ∗ G(φj)∥pLp(Hn)
<∞,

endowed with with the corresponding norm (with the obvious modi�cation when p = ∞), where (φj) is a
family of elements of C∞

c (R∗
+) such that the φj(2

−j · ) stay in a bounded subset of C∞
c (R∗

+) and
∑

j∈Z φj ⩾ 1
on R∗

+.

We remark that this de�nition does not depend on the choice of (φj) (cf. [22, Lemma 4.14]). In addition,
Bs

p(Hn,R
∗
+)may be interpreted as a suitable closed subspace of a natural Besov space onHn, cf. [19, Sections

7 and 8] for more details. Notice that, if p <∞, then SR∗
+,L(Hn) is dense in B

s
p(Hn,R

∗
+), and the sesquilinear

pairing between SR∗
+,L(Hn) and S ′

R∗
+,L(Hn) induces a canonical sesquilinear pairing between Bs

p(Hn,R
∗
+)

and B−s
p′ (Hn,R

∗
+) which identi�es B−s

p′ (Hn,R
∗
+) with the dual of Bs

p(Hn,R
∗
+) (cf. [22, Theorem 4.23]). We

may then consider a canonical sesquilinear form between Bs
p(Hn,R

∗
+) and B

−s
p′ (Hn,R

∗
+) for every p ∈ [1,∞]

and for every s ∈ R.

De�nition 2.7. Take p ∈ [1,∞] and s > −n+1
p . Then, S(ζ,z) : (ζ

′, x′) 7→ n!
4πn+1

(
x′+i|ζ′|2−z

2i − ⟨ζ ′|ζ⟩
)−n−1

belongs to Bs
p′(Hn,R

∗
+) for every (ζ, z) ∈ Un+1 and the linear mapping

E : B−s
p (Hn,R

∗
+) ∋ u 7→ [(ζ, z) 7→ ⟨u|S(ζ,z)⟩] ∈ A∞

s+(n+1)/p(Un+1)

is well de�ned and continuous. We de�ne Ãp
s(Un+1) as its image, endowed with the corresponding topology.

Notice that S(ζ,z) is the boundary value of the Cauchy�Szeg® kernel on Un+1, that is, the reproducing

kernel of the Hardy space H2(Un+1). Thus, integrating the boundary values of an element f of H2(Un+1)
against S(ζ,z) gives f(ζ, z), so that the extension operator E is naturally de�ned.

We endow Un+1 with an Aut(Un+1)-invariant Riemannian metric (e.g., the Bergman metric) and the
associated distance. For every δ > 0, we say that a family (ζj , zj) of elements of Un+1 is a δ-lattice if it is
maximal for the property that d((ζj , zj), (ζj′ , zj′)) ⩾ 2δ for every j ̸= j′. We may then state the following
result.
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Proposition 2.8. Take p ∈ [1,∞] and s > −n+1
p . Then, the following hold:

(i) Ps′ induces a continuous linear mapping of Lp
s(Un+1) onto Ã

p
s(Un+1) for every s′ > s+

2 ;

(ii) Ap
s(Un+1) = Ãp

s(Un+1) for every s > 0;
(iii) for every s′ > s

2 and for every δ > 0, and for every δ-lattice (ζj , zj) on Un+1, the mapping

ℓp(J) ∋ λ 7→
∑
j

λjKs′( · , (ζj , zj))ρ(ζj , zj)(n+1)/p′+2s′−s ∈ Ãp
s(Un+1)

is well-de�ned and continuous, with locally uniform convergence of the sum when p = ∞, and onto
when δ is su�ciently small;

(iv) the mapping Ãp
s(Un+1) ∋ f 7→ ∂k2 f ∈ Ãp

s+k(Un+1) is an isomorphism for every k ∈ N;

(v) if p <∞, then

Ãp
s(Un+1) =

{
f ∈ A∞

s+(n+1)/p(Un+1) : ∂
k
2 f ∈ Ap

s+k(Un+1)
}

=
{
f ∈ A∞

s+(n+1)/p,0(Un+1) : ∂
k
2 f ∈ Ap

s+k(Un+1)
}

for every k ∈ N such that s+k > 0, where A∞
s′,0(Un+1) :=

{
f ∈ Hol(Un+1) : ρ

s′f ∈ C0(D)
}
, endowed

with the norm of A∞
s′ (Un+1), for every s′ > 0.

Here, and throughout the paper, we set

∂2f(ζ, z) =
d

dz
f(ζ, z)

for every f ∈ Hol(Un+1) and for every (ζ, z) ∈ Un+1. Notice that, when n = 0, this leads to an abuse of
notation, as it is more natural to consider Cn×C as C (so that there is no `second' variable), than { 0 }×C.

Proof. (i) This follows from [23, Theorem 4.5] and [22, Corollary 5.11].
(ii) This follows from [22, Corollary 5.11].
(iii) This follows from [23, Theorem 4.5] and [22, Corollary 5.11].
(iv) This follows from [22, Proposition 5.13].

(v) Observe that Ãp
s(Un+1)∩A2

1/2(Un+1) is dense in Ã
p
s(Un+1) and contained in A

∞
s+(n+1)/p,0(Un+1) (cf. [22,

Theorem 4.23 and Propositions 5.4 and 3.9]), so that Ãp
s(Un+1) embeds continuously into A∞

s+(n+1)/p,0(Un+1).

Thus, the assertion follows by means of (ii) and (iv), applied to Ãp
s(Un+1) and Ã

∞
s+(n+1)/p(Un+1). □

For future reference we state the following elementary lemma.

Lemma 2.9. Take p ∈ [1,∞] and s ⩾ s′ > −n+1
p . Then, for every h > 0, the mapping

Ãp
s(Un+1) ∋ f 7→ f( · + (0, ih)) ∈ Ãp

s′(Un+1)

is well de�ned and continuous.

Proof. Observe �rst that the case s = s′ follows from [22, Theorem 5.2], so that we may assume that s > s′,

that is, s − s′ > 0. Then, observe that S(0,ih) ∈ Bs−s′

1 (Hn,R
∗
+) by [22, Lemma 5.1], so that [19, Theorem

4.3 and the remarks following its statement] show that the mapping

B−s
p (Hn,R

∗
+) ∋ u 7→ u ∗ S(0,ih) ∈ B−s′

p (Hn,R
∗
+)

is well de�ned and continuous. The assertion follows since

(Eu)( · + (0, ih)) = E(u ∗ S(0,ih)),

as one readily verifes (cf., e.g., the proof of [22, Theorem 5.2]). □

We now begin our analysis of invariant function spaces. We recall that Ũs is de�ned in (3) and ρ(ζ, z)
in (5). The following lemma is well known, but we state it explicitly for the reader's convenience.
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Lemma 2.10. For every s > n+ 1 and every φ ∈ Aut(Un+1),

(Ũn+1+2s(φ)⊗ Ũn+1+2s(φ))Ks = Ks. (6)

Proof. It su�ces to observe that if s = 1/2 this is just the standard transformation rule of the unweighted
Bergman kernel. The general case follows at once. □

Proposition 2.11. Take p ∈ [1,∞] and s ∈ R. Then, the following hold:

(i) Ap
s(Un+1) is Ãut-Ũ2(s+(n+1)/p)-invariant with its norm;

(ii) if s > −n+1
p , then Ãp

s(Un+1) is Ãut-Ũ2(s+(n+1)/p)-invariant and the Ũ2(s+(n+1)/p)(φ), as φ runs

through Ãut, are uniformly bounded on Ãp
s(Un+1).

Proof. (i) Observe �rst that, applying Lemma 2.10 with s = 1/2 and evaluating both sides of (6) at
((ζ, z), (ζ, z)), we see that

ρ(φ(ζ, z))−(n+2)|Jφ(ζ, z)|2 = ρ(ζ, z)−(n+2)

for every (ζ, z) ∈ Un+1. Then, if p ∈ [1,∞) and f ∈ Ap
s(Un+1),∫

Un+1

|Ũ2(s+(n+1)/p)(φ)f(ζ, z)|pρ(ζ, z)ps−1 d(ζ, z)

=

∫
Un+1

|f(φ−1(ζ, z))|p|(Jφ−1)(ζ, z)|2+2(ps−1)/(n+2)ρ(ζ, z)ps−1 d(ζ, z)

=

∫
Un+1

|f(ζ, z)|pρ(ζ, z)ps−1 d(ζ, z).

The case p = ∞ is similar.

(ii) Observe that, by (ii)P of Proposition 2.8, Ã∞
s∞(Un+1) = A∞

s∞(Un+1), where s∞ = s + (n + 1)/p > 0,

so that and part (i) shows that Ã∞
s∞(Un+1) is Ãut-Ũ2s∞-invariant. Now, [19, Proposition 6.2] shows that

Ãp
s
∼= (Ã1

s0 , Ã
∞
s∞)[1/p]

(complex interpolation), where s0 = s − (n + 1)/p′ > −(n + 1). Thus, it su�ces to prove that Ã1
s(Un+1) is

G̃-Ũ2(s+n+1)-invariant whenever s > −(n+ 1).
To this aim, observe that, if (ζj , zj) is a δ-lattice on Un+1 with δ su�ciently small, then (iii) of Proposi-

tion 2.8 shows that the mapping

Ψ(ζj ,zj) : ℓ
1(J) ∋ λ 7→

∑
j

λjKs′( · , (ζj , zj))ρ(ζj , zj)2s
′−s ∈ Ã1

s(Un+1)

is continuous and onto, where s′ := s+ (n+ 1)/2 > s/2. Then, using the relations

Ũ2(s+n+1)(φ)Ks′( · , (ζj , zj)) = Ks′( · , φ(ζj , zj))Jφ(ζj , zj)
2(s+n+1)/(n+2)

and
ρ(ζj , zj)

2s′−s = ρ(φ(ζj , zj))
2s′−s|Jφ(ζj , zj)|2(s−2s′)/(n+2)

for every φ ∈ Aut(Un+1) and for every j ∈ J , which follow from Lemma 2.10, we see that there is a
unimodular function uφ : J → C such that

Ũ2(s+n+1)(φ)Ψ(ζj ,zj)(λ) = Ψ(φ(ζj ,zj))(uφλ)

for every φ ∈ Aut(Un+1) and for every λ with �nite support, hence for every λ ∈ ℓ1(J). The assertion follows

from the fact that there is C > 1 such that, �xing a norm on Ã1
s(Un+1),

1

C
∥λ∥ℓ1(J)/ kerΨ(φ(ζj,zj))

⩽ ∥Ψ(φ(ζj ,zj))(λ)∥Ã1
s(Un+1)

⩽ C∥λ∥ℓ1(J)/ kerΨ(φ(ζj,zj))

for every λ ∈ ℓ1(J) and for every φ ∈ G, as the proof of Proposition 2.8 shows (cf. [22, Theorem 3.23]). □
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2.3. Decent and Strongly Decent Spaces.

De�nition 2.12. Let X,Y be two locally convex spaces such that X ⊆ Y set-theoretically. Then, we say
that X is Y -decent if there is a continuous linear functional on Y which induces a non-zero continuous linear
functional on X.

We say that X is strongly Y -decent if the set of continuous linear functionals on X which extend to
continuous linear functionals on Y is dense in the weak dual topology of X ′.

We say that X is Y -saturated if it contains the intersection of the kernels in Y of the continuous linear
functionals on Y which induce continuous linear functionals on X.

In the sequel, Y will always be the space Hol(D) and X a semi-Banach space of Y , so that we shall
simply say that X (or its seminorm) is (strongly) decent or saturated if it is (strongly) Hol(D)-decent or
Hol(D)-saturated, respectively, for simplicity. We shall nonetheless state the results of this Subsection in a
somewhat more general context.

Notice that if X is strongly Y -decent, then it is Y -decent if and only if it is non-trivial (as a topological
vector space, that is, it has a non-trivial topology).

Proposition 2.13. Let X be a complete seminormed space and Y a Fréchet space such that X ⊆ Y . Let G
be a group of automorphisms of Y which induce automorphisms of X. Then, the following hold:

(i) X is Y -decent if and only if there is a closed G-invariant vector subspace V of Y such that the
canonical mapping X → Y/V is continuous and non-trivial;

(ii) X is strongly Y -decent if and only if there is a closed G-invariant vector subspace V of Y such that
X ∩ V is the closure of { 0 } in X and the canonical mapping X → Y/V is continuous;

(iii) X is strongly Y -decent and Y -saturated if and only if the (G-invariant) closure V of { 0 } in X is
closed in Y , and the canonical mapping X → Y/V is continuous.

Notice that, if X is strongly Y -decent and V is as in (ii), then X +V , endowed with the seminorm which
is 0 on V and induces the given seminorm on X, is strongly Y -decent, Y -saturated, and G-invariant. In
other words, every strongly Y -decent space has a `saturation'.

Notice that, taking G = { I }, we get a characterization of (strongly) Y -decent spaces.

Proof. Assume that X is (strongly) Y -decent, and let W be the space of continuous linear functionals
on Y which induce continuous linear functionals on X. Observe that W is G-invariant since G induces
automorphisms of both X and Y . In addition, if V =

⋂
L∈W kerW , then V is a closed G-invariant subspace

and X ̸⊆ V (resp. X ∩ V is the closure of { 0 } in X, since the canonical image of W in X ′ is dense in the
weak dual topology). Let us prove that the mapping X → Y/V is continuous. Notice that it will su�ce to
prove that the canonical mapping X/(X ∩ V ) → Y/V is continuous. Since both X/(X ∩ V ) and Y/V are
Fréchet spaces, we may use the closed graph theorem. Then, let (xj) be a sequence in X and take x ∈ X
and y ∈ Y so that xj +X ∩ V converges to x +X ∩ V in X/(X ∩ V ), while xj + V converges to y + V in
Y/V . Then, ⟨L, xj⟩ converges both to ⟨L, x⟩ and to ⟨L, y⟩ for every L ∈ W , so that x − y ∈ V . Then, the
canonical image of x+X ∩ V in Y/V is y + V , whence our claim.

Conversely, assume that there is a closed vector subspace V of Y such that the canonical mapping
X → Y/V is continuous and non-trivial. Then, there is L ∈ (Y/V )′ which does not vanish on π(X), where
π : Y → Y/V is the canonical mapping. Then, L ◦π induces a non-zero continuous linear functional on both
X and Y , so that X is Y -decent. This completes the proof of (i).

Then, assume that there is a closed vector subspace V of Y such that X ∩ V is the closure of { 0 } in X
and the canonical mapping X → Y/V is continuous. Then, each element of the polar W of V in Y ′ induces
a continuous linear functional on X, and the canonical image of W in X ′ is dense in the weak dual topology
(as X ∩ V is the closure of { 0 } in X). Thus, X is strongly Y -decent.

The proof of (iii) follows from that of (ii) and the de�nition of Y -saturated spaces. □
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Proposition 2.14. Let X be a semi-Banach space and Y a separable Fréchet space such that X ⊆ Y .
Assume that X is strongly Y -decent and Y -saturated, and denote by V the closure of { 0 } in X. Assume
that the Hausdor� space associated with X (namely, X/V ) is re�exive. Then, X is separable.

In addition, let G be a locally compact group and π be a continuous representation of G in Y such that
π(g) induces a continuous automorphism of X for every g ∈ G. Then, π induces a continuous representation
of G in X (or, equivalently, in X/V ).

Notice that the assumptions are satis�ed if Y = Hol(D) and X is a semi-Hilbert space.

Proof. By Proposition 2.13, there is a closed subspace V of Y such that X ∩ V is the closure of { 0 } in X
and the canonical mapping L : X → Y/V is continuous. By [16, Corollary 1 to Proposition 6 of Chapter III,
� 3, No. 4], the weak dual topology of (Y/V )′ is separable. Since tL is continuous with dense image for the
weak dual topologies, this proves that X ′ is separable in the weak dual topology. Since X is re�exive, this
proves that X ′ is separable in the strong dual topology, so that also X is separable.

Next, observe that the mapping G ∋ g 7→ ⟨L, π(g)x⟩ is continuous for every x ∈ X and for every L ∈ V ◦.
Since the canonical image of V ◦ is dense in the weak topology of X ′, hence in the strong topology of X ′,
thanks to Proposition 2.13, [17, Corollary 2 to Proposition 18 of Chapter VIII, � 4, No. 6] shows that π
induces a continuous representation of G in X/V , whence the result. □

3. Invariant Reproducing Kernel Hilbert Spaces

We de�ne, for every s ∈ C,

Bs
(ζ′,z′)(ζ, z) :=

(
z − z′

2i
− ⟨ζ|ζ ′⟩

)s

for every (ζ, z), (ζ ′, z′) ∈ Un+1, so that Ks((ζ, z), (ζ
′, z′)) = csB

−n−1−2s
(ζ′,z′) (ζ, z) for s > 0, cf. (4).

Observe that, by the results in [37], Bs is a positive kernel, that is, is the reproducing kernel of some
RKHS contained in Hol(Un+1) if and only if s ⩾ 0.

De�nition 3.1. Take s ⩾ 0. Then, we de�ne As as the RKHS associated with B−s. In other words, As

is the completion of the space of �nite linear combinations of the B−s
(ζ,z), (ζ, z) ∈ Un+1, endowed with the

scalar product de�ned by 〈
B−s

(ζ,z)

∣∣B−s
(ζ′,z′)

〉
As

:= B−s
(ζ′,z′)(ζ, z)

for every (ζ, z), (ζ ′, z′) ∈ D.

Proposition 3.2. If s > 0, then As = Ã2
(s−n−1)/2(Un+1) (with equivalent norms). In addition, A0 is the

space of constant functions.

Notice that [14] provides yet another description of As, for s > 0, which is somewhat analogous to the
one which may be obtained by means of (v) of Proposition 2.8.

Proof. Observe that B−s = c−1
(s−n−1)/2K(s−n−1)/2 for s > n+ 1 (cf. (4)), and that K(s−n−1)/2 is the repro-

ducing kernel of A2
(s−n−1)/2(Un+1) = Ã2

(s−n−1)/2(Un+1) (cf. Proposition 2.8), so that the assertion is clear in

this case. Next, take s > 0, and take k ∈ N so large that s+ 2k > n+ 1. Observe that6

(∂k2 ⊗ ∂k2 )B
−s = (2i)−2k(−s) · · · (−s− 2k)B−s−2k,

so that ∂k2 induces a continuous linear mapping of As onto As+2k. In addition, B−s
(ζ,z) ∈ Ã2

(s−n−1)/2(Un+1)

for every (ζ, z) ∈ Un+1, thanks to [22, Lemma 5.15 and Example 2.12], and ∂k2 induces an isomorphism

of Ã2
(s−n−1)/2(Un+1) onto Ã2

(s+2k−n−1)/2(Un+1) = As+2k by Proposition 2.8. It then follows that As =

Ã2
(s−n−1)/2(Un+1).

Finally, it is clear that A0 is the space of constant functions. □

6Recall that ∂2f(ζ, z) =
d
dz

f(ζ, z).
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Theorem 3.3. Take s ∈ R. If s ⩾ 0, then As is Ãut-Ũs-invariant with its norm.
Conversely, let H be a non-trivial Hilbert space continuously embedded in Hol(Un+1) such that Us induces

a bounded (resp. isometric) representation of GT in H. Then, s ⩾ 0 and H = As with equivalent (resp.
proportional) norms.

In comparison with [4, Theorem 5.1], we observe that our invariance condition is considerably weaker,
since we require invariance only on GT and not on Aut(Un+1). The proof is essentially the same, though.
We point out that we replace the `weak integrability' condition considered in [4, Theorem 5.1] with the
requirement that H embed continuously into Hol(Un+1). However, as we shall prove in Proposition 6.2, this
`weak integrability' condition is actually equivalent to the continuity of the embedding of H into Hol(Un+1),
thanks to Cauchy's theorem (cf. also the proof of [4, Theorem 5.1], on which Proposition 6.2 is based).

Proof. Step I. Let us prove that, if s ⩾ 0, then As and its norm are Ũs-invariant. Notice that, by the
de�nition of As, this is equivalent to the relation

(Ũs(φ)⊗ Ũs(φ))B
−s = B−s

for every φ ∈ Ãut. This latter fact is clear for s > n+1, thanks to Lemma 2.10, and then extends to general
s by taking powers.
Step II. Take H as in the statement, and de�ne

C := sup
φ∈GT

∥Us(φ)∥L (H),

so that C is �nite (resp. 1). Take a right-invariant mean m on ℓ∞(GT ) (cf. Proposition 2.2), and de�ne

⟨f |g⟩′H := m(φ 7→ ⟨Us(φ)f |Us(φ)g⟩H)

for every f, g ∈ H, so that ⟨ · | · ⟩′H is a well-de�ned Us-invariant scalar product on H. In addition,

1

C
∥f∥H ⩽ ∥f∥′H ⩽ C∥f∥H

for every f ∈ H. Let K be the reproducing kernel of H, with respect to the scalar product ⟨ · | · ⟩′H , and

observe that K is (Us ⊗ Us)-invariant. Hence, the mapping

((ζ, z), (ζ ′, z′)) 7→ K((ζ, z), (ζ ′, z′))Bs
(ζ′,z′)(ζ, z)

is invariant under composition by the elements of GT , thanks to step I. Since GT acts transitively on Un+1,
it then follows that there is a constant C ′ > 0 such that

K((ζ, z), (ζ, z)) = C ′B−s
(ζ,z)(ζ, z)

for every (ζ, z) ∈ Un+1. Since the function

Un+1 × c(Un+1) ∋ ((ζ, z), (ζ ′, z′)) 7→ K((ζ, z), c(ζ ′, z′))Bs
c(ζ′,z′)(ζ, z) ∈ C

is holomorphic (where c : (ζ, z) 7→ (ζ, z)), we see that

K((ζ, z), (ζ ′, z′)) = C ′B−s
(ζ′,z′)(ζ, z)

for every (ζ, z), (ζ ′, z′) ∈ Un+1. In particular, B−s is a positive kernel, so that s ⩾ 0 (cf. the remarks at the
beginning of Section 3). It follows that H = As and

∥f∥′H = C ′−1/2∥f∥As

for every f ∈ H. □
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Remark 3.4. Take s, s′ > 0. Then, the unitary representations Us and Us′ of Aff(Un+1) into As and As′ ,
respectively, are unitary equivalent. An intertwining operator is given by the Riemann�Liouville operator
f 7→ f ∗ I(s−s′)/2, where I(s−s′/2) is the tempered distribution supported on R+ whose Laplace transform is

( · )(s′−s)/2 on R∗
+.

The unitary representations Ũs and Ũs′ of Ãut(Un+1) intoAs andAs′ , respectively, are unitarily equivalent
if and only if s = s′.

Proof. The �rst assertion follows from Propositions 2.8 and 3.2 and from the homogeneity of the distribution
I(s−s′/2).

For what concerns the second assertion, observe that, since Us and Us′ , restricted toGT , may be considered

as irreducible subrepresentations of Ũs and Ũs′ , respectively (cf. Theorem 3.3), if Ũs and Ũs′ are (unitarily)

equivalent, then f 7→ f ∗ I(s−s′)/2 must be an intertwining operator by Schur's lemma (cf. [30, Theorem 2

of � 21, No. 3]). In addition, if K̃ is the stabilizer of (0, i) in Ãut, then the K̃-Us-orbit of B
−s
(0,i) in As is

one-dimensional by Lemma 2.10. On the contrary, B−s
(0,i) ∗ I

(s−s′)/2 = cs,s′B
(s+s′)/2
(0,i) for some non-zero cs,s′

(cf. the proof of [22, Lemma 5.15]), and the K̃-Us′ -orbit of B
(s+s′)/2
(0,i) is not one-dimensional unless s = s′

(either use the proof of Theorem 3.3 to show that Ũs′(ι)B
(s+s′)/2
(0,i) is not a scalar multiple of B

(s+s′)/2
(0,i) , or use

Proposition 6.2 transferring the problem to the bounded realization of D). □

We conclude this section with some related remarks that will prove useful in the following sections.

De�nition 3.5. For every s ∈ R and for every k ∈ N such that s+ 2k ⩾ 0, we de�ne7

As,k :=
{
f ∈ Hol(Un+1) : ∂

k
2 f ∈ As+2k

}
,

endowed with the corresponding prehilbertian seminorm.

We de�ne Âs,k as the Hausdor� space associated with As,k, that is, As,k/ ker ∂
k
2 .

We remark that, using [14, Theorem 5.5] it is easy to check that Â0,1 is canonically isomorphic to the
classical Dirichlet space, for all n ≥ 0.

Corollary 3.6. Take s ∈ R and k ∈ N. If s+ 2k ⩾ 0, then As,k is a semi-Hilbert space and is Aff(Un+1)-
Us-invariant with its seminorm.

Conversely, let H be a semi-Hilbert space of holomorphic functions. Assume that the following hold:

• the canonical mapping H → Hol(Un+1)/ ker ∂
k
2 is continuous and non-trivial;

• Us induces a bounded (resp. isometric) representation of GT in H.

Then, s + 2k ⩾ 0, H ⊆ As,k continuously, and the canonical mapping H/(H ∩ ker ∂k2 ) → Âs,k is an
isomorphism (resp. a multiple of an isometry).

We �rst need the following lemma.

Lemma 3.7. Take s ∈ R and k ∈ N. Then, for every f ∈ Hol(Un+1) and for every φ ∈ Aff(Un+1),

(Us+2k(φ))∂
k
2 f = ∂k2 (Us(φ)f).

Proof. The assertion is clear if φ ∈ Hn and also if φ ∈ U(n) (acting on the �srt variable). Then, assume
that φ : (ζ, z) 7→ (Rζ,R2z) for some R > 0. Then,

∂k2 (f ◦ φ−1) = R−2k(∂k2 f) ◦ φ−1

so that the assertion follows, since R−2k = |(Jφ−1)2k/(n+2)(0, i)|. □

7Recall that ∂2f(ζ, z) =
d
dz

f(ζ, z).
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Proof of Corollary 3.6. Observe that the mapping ∂k2 : Hol(Un+1)/ ker ∂
k
2 → Hol(Un+1) is an isomorphism

(onto), thanks to [36, Theorem 9.4]. On the one hand, this implies that ∂k2 maps As,k onto As+2k, so that
As,k is complete. The invariance of As,k then follows from Theorem 3.3 and Lemma 3.7.

On the other hand, this implies that the canonical mapping H → Hol(Un+1)/ ker ∂
k
2 is continuous and

non-trivial if and only if the linear mapping ∂k2 : H → Hol(Un+1) is continuous and non-trivial. Therefore,
using Lemma 3.7, we see that ∂k2 (H) is a Hilbert space which embeds continuously into Hol(Un+1) and
in which Us+2k induces a bounded (resp. unitary) representation of GT . Then, Theorem 3.3 implies that
∂k2 (H) = As+2k with an equivalent (resp. proportional) norm, whence the result. □

4. Invariant Spaces for n = 0

In this section, we assume that n = 0, and we characterize Us- and Ũs-invariant strongly decent complete
prehilbertian spaces on U1 = C+.

We begin by describing the closed Aff(C+)- and Ũs-invariant subspaces of Hol(C+). We denote by Pk(C),
or simply Pk, the space of holomorphic polynomials on C of degree < k.

Observe that a vector subspace of Hol(C+) is Aff(C+)- Us-invariant if and only if it is Aff(C+)-U0-
invariant, so that we shall simply say Aff(C+)-invariant in this case.

We observe explicitly that here and in Section 5 we shall �rst characterize the closed Aff- and Ũs-invariant
vector subspaces of Hol. This classi�cation will be fundamental in the characterization of Us-invariant semi-
Hilbert spaces of holomorphic functions, and may actually be interpreted as a description of certain mean-
periodic functions in Hol. Since the proof in the case n > 0 is not simpler to the one needed for general
Siegel domains (of type II), we shall defer the proof of these results until Section 7, where the general case is
handled for future reference. Here and in Proposition 5.1 we shall limit ourselves to specializing the general
results in this context, as well as providing a more precise description of the resulting spaces.

Proposition 4.1. Let V be a proper closed subspace of Hol(C+) and take s ∈ R. Then, V is Aff(C+)-
invariant if and only if V = Pk for some k ∈ N.

In addition, V is Ãut-Ũs-invariant if and only if V = { 0 } or s ∈ −N and V = P1−s.

Proof. By Proposition 7.1, if V is Aff(C+)-invariant, then V ∩ P is dense in V , where P denotes the space
of holomorphic polynomials on C. Since the Aff(C+)-invariant proper subspaces of P are clearly the Pk,
k ∈ N, the �rst assertion follows.

Now, take k ∈ N and observe that, by Proposition 2.2, Pk is Ãut-Ũs-invariant if and only if Ũs(ι)Pk = Pk,
where ι : z 7→ −1/z.8 Now, observe that, for every h = 0, . . . , k − 1,

Ũs(ι)( · )h = (−1)h( · )−h−s

thanks to (2), possibly up to a unimodular constant. Therefore, in order that Pk be Ãut-Ũs-invariant, it
is necessary and su�cient that { 0, . . . , k − 1 } = { −s, . . . ,−(k − 1)− s }, that is, k = 1 − s. The proof is
complete. □

Now, we shall indicate an intertwining formula between Ũs and Ũ2−s, when s ∈ −N.

Proposition 4.2. Take s ∈ −N. Then,

[Ũs(φ)f ]
(1−s) = Ũ2−s(φ)f

(1−s)

for every φ ∈ Ãut and for every f ∈ Hol(C+).

When s = 0, this is a particular case of [27, Theorem 3.1]. See [4, Theorem 6.4] for the case of the unit
disc (and more general symmetric domains).

8Notice that this action does not determine ι in Ãut, but determines its image in G, which is su�cient to determine Ũs(ι)
up to a unimodular constant.
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Proof. Notice �rst that Lemma 3.7 implies that

[Ũs(φ)f ]
(1−s) = Ũ2−s(φ)f

(1−s)

for every φ ∈ GT (identi�ed with a subgroup of Ãut), and for every f ∈ Hol(C+). The same then holds for

every φ ∈ Ãut whose canonical image in Aut(C+) belongs to GT . Then, take ι ∈ Ãut such that ι : z 7→ −1/z,
and observe that there is ε ∈ { ±1 } such that

Ũs′(ι)f(z) = (εz)−s′f(−1/z)

for every f ∈ Hol(C+), for every s
′ ∈ −Z, and for every z ∈ C+. Then, for every h ∈ N,

[Ũs(ι)( · )h](1−s)(z) = ε−s(−1)h(−h− s)(−h− s− 1) · · · (−h)z−h−1

and
Ũ2−s(ι)[( · )h](1−s)(z) = εs−2(−1)h−1+sh(h− 1) · · · (h+ s)z−h−1

for every z ∈ C+, whence the asserted equality in this case. Since the space of polynomials is dense in
Hol(C+), the assertion follows thanks to Proposition 2.2. □

Theorem 4.3. Take s ∈ R. If k ∈ N and s+ 2k ⩾ 0, then As,k is strongly decent, saturated, and Aff(C+)-
Us-invariant with its seminorm. If, in addition, s ⩾ 0 and k = 0, or s ∈ −N and k = 1 − s, then As,k is

Ãut-Ũs-invariant with its seminorm.
Conversely, let H be decent semi-Hilbert space of holomorphic functions such that Us induces a bounded

(resp. isometric) representation of Aff(C+) in H. Assume that one of the following conditions hold:

(a) H is strongly decent;

(b) ∥( · )−s/2∥H = 0 if s ∈ −2N and ( · )−s/2 ∈ H.

Then, there is k ∈ N such that s + 2k ⩾ 0 and H embeds as a dense subspace of As,k with the induced

topology (resp. and proportional seminorms). If, in addition, Ũs(ι) induces a continuous automorphism of

H for some ι ∈ Ãut such that ι : z 7→ −1/z, then either k = 0 or s ∈ −N and k = 1− s.

Notice that saying that H embeds as a dense subspace in As,k (with the induced topology) means that

H is a subspace of As,k such that H + ker( · )(k) = H + Pk = As,k, thanks to the completeness of H.
We observe explicitly that we could remove assumptions (a) and (b) and show that H = As,k, if we

knew that the only dense Aff(C+)-invariant vector subspaces of As,k, for s+ 2k > 0, are precisely the As,k′

for s + 2k′ > 0. Nontheless, we do not even known if the space Pk admits an Aff(C+)-invariant algebraic
complement H ′ in As,k when s+2k > 0. Notice, though, that if such a space H ′ exists, then H ′ is a Hilbert
space, but does not embed continuously into Hol(C+). Therefore, such spaces, if existing, must be somewhat
pathological.

We point out that the statements of [6, Theorems 1 and 2] (which deal with the case s = 0) seem to be
erroneous: on the one hand, the null space and the space of constant functions satisfy all the assumptions of
the cited results, but are not the Dirichlet space; on the other hand, the fact that a Möbius-invariant space
H is contained in the Dirichlet space and has the induced topology (or even the induced seminorm) does
not immediately imply that it is the whole Dirichlet space, as there might exist Möbius-invariant algebraic
complements of the space of constant functions in the Dirichlet space (and this possibility is not ruled out
in the proof).9

We also point out, in this connection, that [6, Remark] seems to be erroneuos: on the one hand, one
must assume that H contains non-constant functions in order to be sure that the given arguments produce
non-zero polynomials in H; on the other hand, unless one assumes that H contains the constant functions,
it is only possible to deduce that the non-constant monomials belong to H, and this does not seem to be
su�cient to conclude that H cannot be an algebraic complement of the space of constant functions in the
Dirichlet space. The subsequent proof then builds on the erronous claim that, if f(z) =

∑
k akz

k (Taylor

9We point out, though, as we remarked earlier, that we do not know whether such pathological spaces do exist or not.
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development about 0) and f ∈ H, then f =
∑

k ak( · )k (orthogonal sum in H): despite the fact that the
( · )k, k ∈ N , are pairwise orthogonal in H (where N is the set of k ∈ N such that ( · )k ∈ H, so that N is
either N or 1 + N), one may not claim that the Taylor development of the orthogonal sum

∑
k∈N ak( · )k

must be
∑

k∈N akz
k � unless the sequence (ak) has �nite support � since H does not necessarily embed

continuously in Hol(C+) (but only in Hol(C+) modulo constant functions).

Proof. The �rst assertion follows from Corollary 3.6 and Proposition 4.2.
Then, take H as in the statement. By Proposition 2.13, there is an Aff(C+)-invariant closed vector

subspace V of Hol(Un+1) so that the canonical mapping H → Hol(Un+1)/V is continuous and non-trivial.
Observe that Proposition 4.1 implies that there are h, k ∈ N, h ⩽ k, such that V = Pk and Ph is the
(Aff(C+)-invariant) closure of { 0 } in H. Therefore, Corollary 3.6 implies that H ⊆ As,k continuously, and
that the continuous linear mapping H/(Pk ∩ H) → As,k/Pk is an isomorphism. In order to complete the
proof of the �rst assertion, it then su�ces to show that Pk ∩H = Ph. If condition (a) holds, that is, if H is
strongly decent, then Proposition 2.13 ensures that we may take k so that this is the case.

Then, assume that condition (b) holds, that is, that ∥( · )−s/2∥H = 0 (i.e., −s/2 < h) when s ∈ −2N and
( · )−s/2 ∈ H. Observe �rst that Pk ∩H is �nite-dimensional and Aff(C+)-invariant, so that it equals Pℓ for
some ℓ ∈ { h, . . . , k }, thanks to Proposition 4.1 again. In particular, Us induces a bounded representation
in Pℓ/Ph, so that Us(R · )(( · )j) = R−j−s/2( · )j must stay bounded as R runs through R∗

+, for every

j = h, . . . , ℓ− 1. Therefore, either ℓ = h or ℓ− 1 = h = −s/2. Now, if ℓ− 1 = h = −s/2, then ( · )−s/2 ∈ H,
so that −s/2 < h by (b): contradiction. Thus, ℓ = h, as we wished to prove.

Finally, assume that Ũs(ι) induces a continuous endomorphism of H for some ι ∈ Ãut such that ι : z 7→
−1/z. Observe that, in this case, Pk and Ph must be Ãut-Ũs-invariant (cf. Proposition 2.2), so that
Proposition 4.1 implies that either k = h = 0, or s ∈ −N and k = 1− s (and h ∈ { 0, 1− s }). The proof is
therefore complete. □

Remark 4.4. If s, s′ ∈ R and k, k′ ∈ N are such that s + 2k, s′ + 2k′ > 0, then Us and Us′ , as unitary

representations of Aff(C+) into Âs,k and Âs′,k′ , respectively, are unitarily equivalent.

If (s, k), (s′, k′) ∈ (R∗
+ × { 0 }) ∪ { (−h, 1− h) : h ∈ N }, then the unitary representations Ũs and Ũs′ of

Ãut(C+) into Âs,k and Âs′,k′ , respectively, are unitarily equivalent if and only if s = s′, s′ = s + 2k, or
s = s′ + 2k′.

The �rst assertion obviously extends to the case n > 0. The second assertion does not, as we shall see in
Remark 5.4.

Proof. The �rst assertion follows from Remark 3.4. If s, s′ > 0 or s, s′ ∈ −N, then also the second assertion
follows from Remark 3.4. The remaining cases follow from Proposition 4.2 and Remark 3.4. □

5. Invariant Spaces for n > 0

In this section, we assume that n > 0, and we characterize Us- and Ũs-invariant strongly decent semi-
Hilbert spaces of holomorphic functions on Un+1. For simplicity of notation, we write U in place of Un+1.

As in Section 4, we shall simply say that a vector subspace of Hol(U) is Aff(U)-invariant if it is Aff(U)-
Us-invariant for some s ∈ R.

We begin by describing the closed Aff(U)- and Ũs-invariant subspaces of Hol(U). Recall that Pk denotes
the space of holomorphic polynomials of degree < k. We denote by Pk the space of homogeneous holomorphic
polynomials of degree k.

Proposition 5.1. Let V be a proper closed subspace of Hol(U), and take s ∈ R. Then, V is Aff(U)-
invariant if and only if V is the closure of

⊕
k∈N[Pk(C

n) ⊗ Phk(C)] in Hol(U), where h0 ∈ N and hk+1 ∈
{ hk, (hk − 1)+ } for every k ∈ N.

In addition, V is Ãut-Ũs-invariant if and only if V = { 0 } or s ∈ −N and V = P1−s(Cn+1).
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Proof. Step I. By Proposition 7.1, we may reduce to describing V ∩P, where P is the space of holomorphic
polynomials on U .

Observe that, if µ is a (Radon) measure with compact support on Aff(U), then we may de�ne

Us(µ) :=

∫
Aff(U)

Us(φ) dµ(φ) (7)

as a weak integral in L (Hol(U)), endowed with the topology of pointwise convergence. Note that this
operator is independent of s if µ is supported in NU(n). Now, �x k ∈ N and de�ne a measure µk on Aff(U)
as follows. Consider the canonical homomorphism π : T ∋ α 7→ [(ζ, z) 7→ (αζ, z)] ∈ Aff(U), and de�ne

⟨µk, f⟩ :=
∫
T

αkf(π(α)) dα

for every f ∈ Cc(GAff). Then, consider the operator

πk := Uλ(µk), (8)

and observe that

πk(f)(ζ, z) =
1

k!
∂k1 f(0, z) · ζk

for every f ∈ Hol(U) and for every (ζ, z) ∈ U . It is then clear that πk maps Hol(U) continuously onto the space
Pk(C

n)⊗Hol(C+), canonically identi�ed with a subspace of Hol(U). Furthermore, [25, Theorem 2.1] implies
that Us induces an irreducible representation U ′

k of the unitary group U(n) in Pk(C
n), for every k ∈ N, and

that these representations are pairwise inequivalent. Let us prove that, for every k ∈ N, there is a vector
subspace Vk of Hol(C+) such that πk(V ) = Pk(C

n)⊗ Vk.
10 Observe �rst that U ′

k(M(U(n))) is a unital sub-
C∗-algebra of L (Pk(C

n)), and that, by Schur's lemma, its commutant is CI (cf. [30, Theorem 2 of � 21, No.
3]). Therefore, by the bicommutant theorem (cf. [30, Theorem of � 34, No. 2]), U ′

k(M(U(n))) = L (Pk(C
n)).

Then, take a basis p1, . . . , ph of Pk(C
n) and f ∈ πk(V ). Observe that there are uniquely determined

elements f1, . . . , fh of Hol(C+) such that f =
∑

j pj ⊗ fj . Take j0 ∈ { 1, . . . , h } and µj0 ∈ M(U(n)) such

that U ′
k(µj0)pj = δj,j0pj for every j = 1, . . . , h. Then,

V ∋ Us(µj0)f =
∑
j

U ′
k(µj0)(pj ⊗ fj) = pj0 ⊗ fj0 .

By the arbitrariness of f and j0, this implies that πk(V ) = Pk(C
n) ⊗ Vk for some vector subspace Vk of

Hol(C+). Observe that, since the πk are projectors of Hol(U), πkπh = πhπk = 0 for h ̸= k, and
∑

k πk = I

in the strong topology of L (Hol(U)), it is clear that πk(V ) = V ∩
(⋂

k′ ̸=k kerπk′
)
is closed in Hol(U), so

that Vk is closed in Hol(C+). In addition, it is clear that

Us(φ)(p⊗ f) = p⊗ Us+k(φ
′)f (9)

for every p ∈ Pk(C
n), for every f ∈ Hol(C+), for every φ ∈ Aff(U), and for every φ′ ∈ Aff(C+) such that

φ : (ζ, z) 7→ (ζ, z + x) and φ′ : z 7→ z + x for some x ∈ R, or φ : (ζ, z) 7→ (R1/2ζ,Rz) and φ′ : z 7→ Rz for
some R > 0. It then follows that Vk is Aff(C+)-invariant, so that it equals Pkh(C) for some kh ∈ N∪ {∞ },
interpreting P∞(C) as the space of holomorphic polynomials on C, thanks to Proposition 4.1. Thus, V ∩P =⊕

k[Pk(C
n)⊗ Phk(C)].

Step II. Take k, h ∈ N, and let us prove that the Aff(U)-invariant vector subspace Vk,h of P generated
by Pk(C

n)⊗ Ph(C) is

Pk,h :=
∑

k′⩽k,h1+h2=h

[Pk′+h1
(Cn)⊗ Ph2(C)] =

h+k−1⊕
ℓ=0

[Pℓ(C
n)⊗ Ph−(ℓ−k)+(C)].

10Here we are interested in showing that πk(V ) is the tensor product of Pk(C
n) with some closed vector subspace of Hol(C+),

with reference to the canonical embedding of Pk(C
n) ⊗ Hol(C+) into Hol(U), and not simply the tensor product of Pk(C

n)
with some abstract vector space (as the general theory of representation shows).
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Observe that, since Aff(U) is the semi-direct product of GL(U) and Hn (cf. Subsection 2.1), and since
Pk(C

n)⊗Ph(C) is clearly GL(U)-invariant, it will su�ce to consider the action ofHn. Then, take p ∈ Pk(C
n)

and h′ < h. Observe that, for every (ζ, x) ∈ Hn,

Us(ζ, x)(p⊗ ( · )h
′
)(ζ ′, z′) = p(ζ ′ − ζ)(z′ − x+ i|ζ|2 − 2i⟨ζ ′|ζ⟩)h

′

=

k∑
k′=0

∑
h1+h′

2=h′

h′!

h1!h′2!k
′!
p(k

′)(−ζ) · ζ ′k
′
(−2i⟨ζ ′|ζ⟩)h1(z′ − x+ i|ζ|2)h

′
2

for every (ζ ′, z′) ∈ U , so that Us(ζ, x)(p⊗ ( · )h′
) ∈ Pk,h. It is then readily seen that Vk,h ⊆ Pk,h. Conversely,

choose p = ⟨ · |ζ⟩k in the above computations, and observe that

Us(ζ, x)(p⊗ ( · )h
′
)(ζ ′, z′) =

k∑
k′=0

∑
h1+h′

2=h′

(−2i)h1
h′!k!

h1!h′2!k
′!(k − k′)!

(−|ζ|2)k−k′
⟨ζ ′|ζ⟩k

′+h1(z′ − x+ i|ζ|2)h
′
2

for every (ζ ′, z′) ∈ U . Therefore, for every ℓ ⩽ h+ k, πℓ(Us(ζ, x)(p⊗ ( · )h′
))(ζ ′, z′) equals

⟨ζ ′|ζ⟩ℓ
min(k,ℓ)∑

k′=(ℓ−h′)+

(−2i)ℓ−k′ h′!k!

(ℓ− k′)!(h′ − ℓ+ k′)!k′!(k − k′)!
(−|ζ|2)k−k′

(z′ − x+ i|ζ|2)h
′−ℓ+k′

.

Since the highest power (in z′) in the above sum occurs only once (for k′ = min(k, ℓ)) and with a non-

zero coe�cient, by the arbitrariness of x it is clear that (ζ ′, z′) 7→ ⟨ζ ′|ζ⟩ℓz′h′
2 belongs to Vk,h for every

h′2 ⩽ h′ − (ℓ− k)+. Thus, Vk,h = Pk,h.
Step III. By step I, we know that V ∩ P =

∑
k∈N[Pk(C

n) ⊗ Phk(C)]. By step II, we know that

Pk′(Cn) ⊗ Phk(C) ⊆ V for every k′ ⩽ k, so that hk′ ⩾ hk and (hk) is decreasing, and that Pk+ℓ(C
n) ⊗

Phk−ℓ(C) ⊆ V for every k and for every ℓ < hk, so that hk+ℓ ⩾ hk − ℓ. Consequently, h0 ∈ N11 and
hk+1 ∈ { hk, (hk − 1)+ } for every k ∈ N. Conversely, given a sequence (hk) with the preceding properties,
the space

⊕
k[Pk(C

n)⊗Phk(C)] is Aff(U)-invariant, since it contains Pk,hk
for every k ∈ N, with the notation

of step II. This completes the proof of the �rst assertion.
Step IV. Now, take V as the closure of

⊕
k[Pk(C

n) ⊗ Phk(C)] in Hol(U), where h0 ∈ N and hk+1 ∈
{ hk, (hk − 1)+ } for every k ∈ N. Observe that we may take ι ∈ Ãut so that ι : (ζ, z) 7→ (−iζ/z,−1/z) and
so that

Ũs(ι)f(ζ, z) = i−ns/(n+2)f(ι(ζ, z))z−s

for every f ∈ Hol(U) and for every (ζ, z) ∈ U , thanks to Proposition 2.2 and (2). In addition, V is Ãut-Ũs-

invariant if and only if Ũs(ι)V ⊆ V , thanks to Proposition 2.2 again. Then take p ∈ Pk(C
n) and f ∈ Hol(C+),

and observe that
Ũs(ι)(p⊗ f) = i−ns/(n+2)(−i)kp⊗ Ũs+k(ι0)f, (10)

where ι0 is a suitable element of Ãut(C+) such that ι0 : z 7→ −1/z. Taking (9) into account, this proves that

V is Ãut-Ũs-invariant if and only if Phk(C) is Ãut(C+)-Ũs+k-invariant for every k ∈ N. If V is Ãut-Ũs-
invariant, then Proposition 4.1 implies that either hk = 0 for every k ∈ N, or s ∈ −N and hk = (1− s− k)+
for every k ∈ N. Conversely, (10) and step III show that P1−s(Cn−1) =

⊕
k[Pk(C

n) ⊗ P(1−s−k)+(C)] is

Ãut-Ũs-invariant. □

Theorem 5.2. Take s ∈ R and let H be a non-trivial strongly decent semi-Hilbert space of holomorphic
functions on U such that Us induces a bounded (resp. isometric) representation of Aff(U) in H. Then, either
one of the following conditions hold:

• there is k ∈ N such that s + 2k > 0 and H is a dense subspace of As,k with an equivalent (resp.
proportional) seminorm;

11If h0 = ∞, then hk = ∞ for every k ∈ N, and V = Hol(U), contrary to our assumptions.
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• s ∈ −N and there is a non-empty subset J of N ∩ (−s− 2N) such that H contains
⊕

j∈J [Pj(C
n)⊗

P−(s+j)/2(C)] as a dense vector subspace, and thereon its seminorm is equivalent (resp. equal) to the
seminorm ∥∥∥∥∥∥

∑
j∈J

(pj ⊗ ( · )−(s+j)/2)

∥∥∥∥∥∥
2

=
∑
j∈J

∥pj∥2j

for every
∑

j∈J(pj⊗( · )−(s+j)/2) ∈
⊕

j∈J [Pj(C
n)⊗P−(s+j)/2(C)], where ∥ · ∥j is a suitable rotation-

invariant Hilbert norm on the space Pj(C
n).

Notice that Corollary 3.6 shows that As,k is Aff(U)-Us-invariant whenever s+ 2k ⩾ 0. The fact that the
remaining spaces (of polynomials) described above are actually GL(U)-Us-invariant (hence generate �nite-
dimensional Aff(U)-Us-invariant spaces of polynomials) is a simple veri�cation left to the reader. We do not
describe all the resulting invariant spaces, but we observe that all non-empty subsets J of N ∩ (−s − 2N)
may occur, as one may see by means of Proposition 5.1.

Notice that the closure of { 0 } in H may be determined by means of Proposition 5.1, at least when H is
saturated.

Proof. Fix a U(n)-invariant Hilbert norm on Pk(C
n) for every k ∈ N.

By Proposition 2.13 and the remark following its statement, we may assume that H is saturated, so that
the closure V of { 0 } in H is closed in Hol(U), and that the canonical linear mapping H → Hol(U)/V
is continuous. In addition, Proposition 2.14 shows that H is separable and that Us induces a continuous
representation of Aff(U) in H. Consequently, if µ is a (Radon) measure with compact support on Aff(U),
then we may de�ne Us(µ) as in (7) both as an endomorphism U1 of Hol(U) and as an endomorphism U2 of
H/V . By the continuity of the mapping H → Hol(U)/V , it is clear that U1 induces U2.

Further, observe that we may assume that the seminorm of H is U(n)-invariant, up to replace it with the
seminorm induced by the equivalent scalar product (f, g) 7→

∫
φ∈U(n)

⟨Us(φ)f |Us(φ)g⟩H dφ.

Then, de�ne πk as in (8) and observe that, by our additional assumption, the πk(H) are pairwise or-
thogonal subspaces of H, and πk(H) ∩ πk′(H) = V for every k ̸= k′. In addition, arguing as in the
proof of Proposition 5.1, we see that for every k ∈ N there is a vector subspace Hk of Hol(C+) such that
πk(H) = Pk(C

n) ⊗ Hk. In addition, by Proposition 5.1, there is a sequence (hk) such that h0 ∈ N and
hk+1 ∈ { hk, (hk − 1)+ } for every k ∈ N, and such that V is the closure of

⊕
k[Pk(C

n)⊗Phk(C)] in Hol(U).
Now, for every f ∈ Hk \Phk(C), it is clear that Pk(C

n)⊗Cf is a U(n)-Us-irreducible subspace of πk(H).
In addition, for every vector subspace H ′ of Hk, the orthogonal complement of Pk(E) ⊗H ′ in πk(H) is of
the form Pk(C

n)⊗H ′′, for some vector subspace H ′′ of Hk (containing Phk(C)). Consequently, we may �nd
a (possibly empty) sequence (fj) of elements of Hk \Phk(C) such that πk(H) is the orthogonal direct sum of
Pk(C

n)⊗Phk(C) and the Pk(C
n)⊗Cfj . If we choose the fj so that ∥p⊗ fj∥H = 1 for every unit vector p in

Pk(C
n) (this is possible since the seminorm of H is U(n)-invariant), and we de�ne a prehilbertian seminorm

on Hk so that its null space is Phk(C) and (fj +Phk(C)) is an orthonormal basis of Hk/Phk(C), then clearly
Hk is complete and πk(H) = Pk(C

n)⊗2 Hk.
12

Let us then prove that Hk is strongly decent and saturated, that is, that the linear mapping Hk →
Hol(C+)/Phk(C) is continuous. Observe that the mapping

Pk(C
n)⊗2 Hk → Pk(C

n)⊗ (Hol(C+)/Phk(C))

is continuous.13 Since the bilinear mapping (p, f) 7→ f induces continuous linear mappings

p⊗ f 7→ f

12Here, we denote by Pk(C
n)⊗2Hk the tensor product of the semi-Hilbert spaces Pk(C

n) and Hk, endowed with the scalar
product de�ned by ⟨p⊗ f |q ⊗ g⟩ := ⟨p|q⟩⟨f |g⟩ for every p, q ∈ Pk(C

n) and for every f, g ∈ Hk.
13If (fj) is a sequence in Pk(C

n) ⊗2 Hk converging to f , then (fj) converges to f in H, so that (fj + V ) converges

to f + V in Hol(U)/V . Applying πk, we then see that (fj + Pk(C
n) ⊗ Phk (C)) converges to f + Pk(C

n) ⊗ Phk (C) in

Pk(E)⊗ (Hol(C+)/Phk (C)).
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of Pk(C
n)⊗2 Hk onto Hk and of Pk(C

n)⊗Hol(C+) onto Hol(C+), our claim follows by means of the open
mapping theorem.

Now, observe that (9) shows that Hk is Aff(C+)-invariant, and that the Us+k(φ), as φ runs through
Aff(C+), are equicontinuous endomorphisms of Hk (resp. isometries). Consequently, Theorem 4.3 implies
that either one of the following hold:

• Hk = Phk(C);
• λ+k ∈ −2N, hk = −(s+k)/2, andHk = P−(s+k)/2+1(C), with a norm equivalent (resp. proportional)
to the following one: ∥∥∥∥∥∥

−(s+k)/2∑
j=0

aj( · )j
∥∥∥∥∥∥ = |a−(s+k)/2|;

• s+ k + 2hk > 0 and Hk = As+k,hk
(C+) with an equivalent (resp. proportional) seminorm.

Denote by K1,K2,K3 the sets of k ∈ N for which the �rst, the second, or the third case occurs.
Assume �rst that K3 ̸= ∅. If H denotes the (Aff(U)-invariant) closure of H in Hol(U), then πk(H) =

Pk(C
n) ⊗ Hol(C+) for every k ∈ K3, so that Proposition 5.1 implies that H = Hol(U). Consequently,

K1 = K2 = ∅ (since πk(H) is �nite-dimensional for k ∈ K1 ∪K2).

Then, V ⊆ ker ∂h0
2 , and H ̸= H ∩ ker ∂h0

2 , so that Corollary 3.6 implies that H ⊆ As,h0
continuously, and

that the canonical mapping H/V → Âs,h0
is an isomorphism onto its image. In addition,

H ∩ ker ∂h0
2 =

⊕
k

[Pk(C
n)⊗ Ph0(C)],

and

Hk ∩ Ph0(C) = As+k,hk
(C+) ∩ Ph0(C) = Phk(C),

since hk ⩽ h0, D
hk : As+k,hk

(C+) → As+k+2hk
(C+) is onto, and D

h0−hk : As+k+2hk
(C+) → As+k+2h0(C+)

is an isomorphism, thanks to Propositions 2.8 and 3.2. Thus, H ∩ ker ∂h0
2 = V , so that H ⊆ As,h0

(U) with
an equivalent (resp. proportional) seminorm.

It then remains to consider the case in which K3 = ∅. Since H is not trivial, K2 must be non-empty,
so that s ∈ −N. In addition, the preceding discussion shows that H contains the orthogonal direct sum⊕

k∈K2
[Pk(E)⊗2 Hk], and that this subspace is complete and dense (but not Aff(U)-invariant, in general).

The proof is therefore complete. □

Theorem 5.3. Take s ∈ R. If s ∈ −N, then de�ne

Ãs,1−s :=
{
f ∈ As,1−s : ∀k ∈ N πkf ∈ Pk(C

n)⊗As+k,(1−s−k)+(C+)
}
,

where (πkf)(ζ, z) =
1
k!∂

k
1 f(0, z)ζ

k for every f ∈ Hol(U), for every (ζ, z) ∈ U , and for every k ∈ N. Then,

Ãs,1−s is Ãut-Ũs-invariant with its seminorm.
Conversely, let H be a non-trivial strongly decent and saturated semi-Hilbert space of holomorphic func-

tions such that Ũs induces a bounded (resp. isometric) representation of Ãut in H. Then, either s ⩾ 0 and

H = As, or s ∈ −N and H = Ãs,1−s with an equivalent (resp. proportional) seminorm.

See [14, Theorem 5.5] for a di�erent description of Ã0,1.

Proof. Step I. By the description of GL(U) provided in Subsection 2.1, it is clear that Ãs,1−s is GL(U)-Us-
invariant with its seminorm. Since Aff(U) is the semi-direct product of Hn and GL(U) (cf. Subsection 2.1),

it will then su�ce to prove that Ãs,1−s is Hn-invariant (the seminorm is then necessarily Hn-invariant) and

also Ũλ(ι)-invariant with its seminorm, where ι ∈ Ãut is such that

ι : U ∋ (ζ, z) 7→
(
− iζ

z
,−1

z

)
∈ U .
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Observe �rst that the proof of Theorem 5.2 shows that πk(As,1−s) = Pk(C
n) ⊗2 As+k,1−s(C+) with

proportional seminorms, so that Pk(C
n) ⊗2 As+k,1−s(C+) is a subspace of As,1−s, and carries a propor-

tional seminorm. In addition, observe that, in order to prove Hn-invariance, it will su�ce to prove that

Us(Hn)πk(Ãs,1−s) ⊆ Ãs,1−s for every k ∈ N. Therefore, it will su�ce to prove that Us(Hn)(p⊗ f) ∈ Ãs,1−s

for every p ∈ Pk(C
n) and for every f ∈ As+k,(1−s−k)+(C+). Then, take (ζ, x) ∈ Hn with ζ ̸= 0, and observe

that

πh(Us(ζ, x)(p⊗ f))(ζ ′, z′) =

h∑
h′=(h−k)+

1

h′!(h− h′)!
(2i⟨ζ ′|ζ⟩)h

′
∂h−h′

ζ′ p(ζ)f (h
′)(z′ + x+ i|ζ|2)

for every h ∈ N and for every (ζ ′, z′) ∈ U , so that it will su�ce to prove that f (h
′)( · + x + i|ζ|2) ∈

As+h,(1−s−h)+(C+) for every h ∈ N and for every h′ = (h−k)+, . . . , k. Since h′+(1−s−h)+ ⩾ (1−s−k)+
and s+ k + 2[h′ + (1− s− h)+] ⩾ s+ 2(1− s− k)+, the assertion follows from Lemma 2.9. The case ζ = 0
is clear.

Then, using (10) and Proposition 4.2, we see that Ãs,1−s is Ũs(ι)-invariant with its seminorm. Thus,

Ãs,1−s is Ãut-Ũs-invariant with its seminorm.
Step II. Take H as in the statement. Denote by V the closure of { 0 } in H, so that V is closed in Hol(U)

and the canonical mapping H → Hol(U)/V is continuous (and non-trivial). If V = { 0 }, then Theorem 3.3
shows that s ⩾ 0 and thatH = As. If, otherwise, V ̸= { 0 }, then Proposition 5.1 shows that s ∈ −N and that
V = P1−s(Cn+1) =

⊕
k⩽−s[Pk(C

n)⊗P1−s−k(C)]. In addition, Proposition 5.1 again implies that H is dense

in Hol(U). Therefore, arguing as in the proof of Theorem 5.2, we see that πk(H) = Pk(C
n)⊗As+k,(1+s+k)+(C)

for every k ∈ N. In particular, H ∩ ker ∂1−s
2 = V , so that Corollary 3.6 implies that H ⊆ As,1−s with an

equivalent (resp. proportional) seminorm. It then follows that H = Ãs,1−s. □

Remark 5.4. Take s ∈ −N and s′ > 0, and assume that n > 0. Then, the unitary representations Ũs and

Ũs′ of Ãut(U) in Âs,1−s, identi�ed with the Hausdor� space associated with Ãs,1−s, and in As′ , respectively,
are not (unitarily) equivalent.

Notice that this contradicts [26, Theorem 5.4] when n > 0.

Proof. It su�ces to observe that, if K̃ denotes the stabilizer of (0, i) in Ãut(U), then As′ contains a one-

dimensional K̃-Us′ -invariant subspace (namely, the one generated by B−s′

(0,i), cf. Lemma 2.10), whereas the

Hausdor� space associated with Ãs,1−s does not (cf. Propositions 6.2 and 6.4) □

6. Invariant Spaces on Bn+1

We now indicate how the preceding results may be transferred to the bounded realization of Un+1, namely
the unit ball Bn+1 in Cn+1. Recall that the Cayley transform

C : Bn+1 ∋ (ζ, z) 7→
(

ζ

1− z
, i
1 + z

1− z

)
∈ Un+1,

with inverse

C−1 : Un+1 ∋ (ζ, z) 7→
(
2i

ζ

z + i
,
z − i

z + i

)
∈ Bn+1,

induces a birational biholomorphism of Bn+1 onto Un+1. Then, Aut(Bn+1) = C−1 Aut(Un+1)C is the group
of biholomorphisms of Bn+1, and C−1Aff(U)C is the stabilizer of (0, 1) in Aut(Bn+1). Since this latter group
does not seem to be of particular signi�cance in this context, we shall consider only Aut(Bn+1). Observe

that, by an abuse of notation, we may then identify Ãut(Bn+1) with C−1Ãut(Un+1)C.
In addition, observe that the complex Jacobian of C and C−1 are

(JC)(ζ, z) = 2i

(1− z)n+2
and (JC−1)(ζ, z) =

(2i)n+1

(z + i)n+2
.
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Then, we de�ne, for every s ∈ R,

(Csf)(ζ, z) := f(C(ζ, z)) (2i)
s/(n+2)

(1− z)s

for every f ∈ Hol(Un+1) and for every (ζ, z) ∈ Bn+1, so that

(C−1
s f)(ζ, z) = f(C−1(ζ, z))

(2i)s(n+1)/(n+2)

(z + i)s
,

for every f ∈ Hol(Bn+1) and for every (ζ, z) ∈ Un+1, where (2i)s
′
:= 2s

′
es

′πi/2 for every s′ ∈ R. If we de�ne

Ũs(φ) := CsŨs(CφC−1)C−1
s

for every φ ∈ Ãut(Bn+1) (with the above abuse of notation), then

Ũs(φ)f = (f ◦ φ−1)(Jφ)s/(n+2)

for every φ ∈ Ãut(Bn+1) and for every f ∈ Hol(Bn+1), for a suitable deifnition of (Jφ)s/(n+2).

Thus, the CsAs, for s ⩾ 0, are the Ãut(Bn+1)-Ũs-invariant RKHS in Hol(Bn+1). Their reproducing kernel
are given by

[(Cs ⊗ Cs)B−s](w,w′) = 22s/(n+2)(1− ⟨w|w′⟩)−s

for every w,w′ ∈ Bn+1.

Proposition 6.1. If s > n+ 1, then

CsAs =

{
f ∈ Hol(Bn+1) : c

′
s

∫
Bn+1

|f(w)|2(1− |w|2)s−n−2 dw <∞

}
,

endowed with the corresponding norm, where c′s := 2−2s/(n+2) (s−1)(s−2)···(s−n−1)
πn+1 .

The proof is a tedious but simple computation which is left to the reader.
In order to provide a description of the remaining spaces, we shall consider the stabilizer K of 0 in

Aut(Bn+1), which corresponds to the stabilizer K of (0, i) in Aut(Un+1) by means of the Cayley transform.
It is well known that K is the unitary group U(n+ 1) on Cn+1 (cf., e.g., [28, Section 2.1]). Observe that, if
we de�ne

U (φ)f := f ◦ φ−1

for every φ ∈ K and for every f ∈ Hol(Bn+1), then U is a continuous representation of K in Hol(Bn+1).

If we denote by K̃ the pre-image of K in Ãut(Bn+1), then there is a character χs on K̃ (namely, φ 7→
(Jφ)−s/(n+2)(0)) such that χsUs is the representation of K in Hol(Bn+1) induced by U . Consequently, a

vector subspace of Hol(Bn+1) is K-U -invariant if and only if it is K̃-Us-invariant for every s ∈ R. Analo-
gously, f ∈ Hol(Un+1) is a �nite K-U -vector, that is, generates a �nite-dimensional K-U -invariant vector

subspace, if and only if it is a �nite K̃-Ũs-vector for every s ∈ R.

Proposition 6.2. The following hold:

(1) the space P of holomorphic polynomials is the space of �nite K-U -vectors (or, equivalently, �nite
T-U -vectors) in Hol(Bn+1);

(2) for every k ∈ N, the space Pk of homogeneous holomorphic polynomials of degree k is K-U -invariant
and irreducible;

(3) if X is a T-U -invariant vector subspace of Hol(Bn+1) such that U (f)X ⊆ X for every f ∈ L1(T),14

then P ∩X = P ∩X, where X denotes the closure of X in Hol(Bn+1);
(4) if X is a strongly decent and saturated semi-Banach space of holomorphic functions on Bn+1 such

that U induces a continuous representation of T in X, then X ∩ P is dense in X;

14This happens, for example, if U induces a continuous representation of T in X.
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(5) if X is a semi-Banach space of holomorphic functions on Bn+1 such that T induces a continuous

representation of T in X and such that Ũs(φ) induces a continuous automorphism of X for every φ ∈
Ãut(Bn+1), then X is strongly decent and saturated if and only if for every f ∈ L1(T), de�ning U (f)
as an endomorphism of Hol(Bn+1), one has U (f)X ⊆ X and ⟨x′,U (f)x⟩ =

∫
T
f(α)⟨x′,U (α)x⟩dα

for every x ∈ X and for every x′ ∈ X ′.

Note that (1) and (2) are well known, whereas (3) and (4) are essentially based on [8, Proposition 1].
In (5) we essentially compare our strong decency (and saturation) conditions with the weak integrability
conditions considered, for example, in [4, Theorems 5.1, 5.2, and 5.3].15 Notice that, for symmetric domains
of higher rank, the proper closed invariant subspaces of the space of holomorphic functions need not be
�nite-dimensional, so that it does not seem possible to establish a precise equivalence between these two
notions.

Before passing to the proof, we translate Proposition 5.1 in this context. The proof is a simple veri�cation
and is omitted.

Remark 6.3. Let V be a proper closed vector subspace of Hol(Bn+1), and take s ∈ R. Then, V is

Ãut(Bn+1)-Ũs-invariant if and only if V = { 0 } or s ∈ −N and V is the space P1−s of holomorphic
polynomials of degree < 1− s on Cn+1.

Proof of Proposition 6.2. (1) It is clear that every p ∈ P is a �nite K-U -vector. Conversely, if f is a �nite
T-U -vector in Hol(Bn+1), then

πkf :=
1

k!
f (k)(0)( · )k =

∫
T

αkU (α)f dα

belongs to the (�nite-dimensional, hence closed) T-U -invariant vector subspace of Hol(Bn+1) generated by
f for every k ∈ N. Hence, only �nitely many of the πkf may be non-zero, so that f is a polynomial.

(2) This is a consequence of [25, Theorem 2.1].
(3) De�ne πk as in (1), and observe that πk(X) ⊆ X by the assumption, so that πk(X) = Pk ∩X. Then,

take f ∈ X, and let (fj) be a sequence in X which converges to f in Hol(Bn+1). Then, πk(fj) converges to
πk(f) in Hol(Bn+1). Since the πk(fj) belong to the (�nite-dimensional, hence) closed vector subspace πk(X)

of Hol(Bn+1), this proves that πk(f) ∈ πk(X). Thus, πk(X) = πk(X), that is, X ∩ Pk = X ∩ Pk, for every
k ∈ N. Thus, X ∩ P = X ∩ P.

(4) By Proposition 2.13, if V is the closure of { 0 } in X, then V is closed in Hol(Bn+1) and the canonical
mapping X → Hol(Bn+1)/V is continuous. For every k ∈ N, de�ne π′

k :=
∫
T
αkU (α) dα as a continuous

linear mapping X → X/V , so that, by the continuity of the linear mapping X → Hol(Bn+1)/V ,

πk(f) ∈ π′
k(f)

for every f ∈ X, where πk is de�ned as in (1). In particular, π′
k(X) ⊆ (X ∩ P + V )/V . Then, observe that

the properties of the Fejér kernel show that
m∑

k=0

(
1− k

m+ 1

)
π′
k(f) =

∫
T

U (α)f

m∑
k=−m

(
1− |k|

m+ 1

)
αk dα

converges to f in the Banach space X/V , whence the result.
(5) Assume that U induces a continuous representation of T in X and that U (f)X ⊆ X and

⟨x′,U (f)x⟩ =
∫
T

f(α)⟨x′,U (α)x⟩dα

15Notice that, in the cited references, there is no mention to the continuity of the representation of T in X induced by
U . Nonetheless, the fundamental [8, Proposition 1] requires this assumption (at least, its proof does), so that this omission
should be considered as a minor mistake. In addition, if one assumes that X is a separable semi-Hilbert space, then the
continuity follows from the measurability conditions which are needed to de�ne the above integrals, thanks to [17, Corollary 2
to Proposition 18 os Chapter VIII, � 4, No. 6].
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for every f ∈ L1(T). In particular, U (f) induces a continuous automorphism of X for every f ∈ L1(T).

Observe that the closure V of { 0 } in X is Ãut(Bn+1)-Ũs-invariant, so that Remark 6.3 implies that
either V = { 0 }, or s ∈ −N and V = P1−s, or V is dense in Hol(Bn+1). De�ne πk, for every k ∈ N, as in
(1), so that πk induces a continuous endomorphism of X by the previous remarks. Observe that (3) implies
that P ∩ V = P ∩ V , where V denotes the closure of V in Hol(Bn+1). In addition, arguing as in the proof
of (4), we see that P ∩X is dense in X. Since X ̸= V , this proves that V is not dense in Hol(Bn+1).

If V = { 0 }, then the continuity of π0 on X implies that the mapping f 7→ f(0) is continuous on X.

Since Ũs(φ) is continuous on X for every φ ∈ H̃(Bn+1) and since Ãut(Bn+1) acts transitively on Bn+1, this
implies that the mapping Lwf 7→ f(w) is continuous on X for every w ∈ Bn+1. Since the common kernel of
the Lw in Hol(Bn+1) is { 0 } = V , it is clear that X is strongly decent and saturated.

If, otherwise, s ∈ −N and V = P1−s, then the mapping

L0,v : X ∋ f 7→ ∂1−s
v f(0) = ∂1−s

v (π1−sf)(0) ∈ C

is continuous for every v ∈ Cn+1. Arguing as before, this implies that the mapping Lw,v : X ∋ f 7→
∂1−s
v f(w) ∈ C is continuous for every w ∈ Bn+1 and for every v ∈ Cn+1.16 Since the common kernel of these
mappings is P1−s = V , X is strongly decent and saturated also in this case.

The converse implication follows from the continuity of the canonical mapping X → Hol(Un+1)/V . □

We may now describe the spaces CsAs, for s ⩾ 0, and CsÃs,1−s, for s ∈ −N, in more precise, though
quite abstract, way. We refer the reader to [31, 38] for other descriptions in terms of integro-di�erential
seminorms. We endow P with the Fisher inner product

⟨p|q⟩F := p(∇)q∗,

where q∗ : w 7→ q(w), for ever p, q ∈ P. Equivalently (cf. [26, Proposition XI.1.1]),

⟨p|q⟩F =
1

πn+1

∫
Cn+1

p(w)q(w)e−|w|2 dw

for every p, q ∈ P.

Proposition 6.4. Take s ⩾ 0. Then, CsAs is the space of f =
∑

k fk ∈ Hol(Bn+1), where fk is the
homogeneous component of degree k of f , such that

∥f∥2CsAs
= 2−2s/(n+2)

∑
k∈N

1

(s)k
∥fk∥2F <∞,

where (s)k = s(s+ 1) · · · (s+ k − 1) for every k ∈ N.17

Take s ∈ −N. Then, CsÃs,1−s is the space of f =
∑

k fk ∈ Hol(Bn+1) such that

∥f∥2CsÃs,1−s
= 2−2(2−s)/(n+2)

∑
k⩾1−s

1

(−s)!(k + s− 1)!
∥fk∥2F <∞.

Proof. For the �rst assertion, one may either compute the transferred norm, or use [25, Corollary 3.7]. For
the second assertion, it is su�cient to compute the transferred seminom of zk, k ∈ N, using a suitable
generalization of [27, Remark 4.5], whose proof is analogous to that of Proposition 4.2. □

16In general, one obtains that the mapping X ∋ f 7→ Yφ,vf ∈ C is continuous, where Yφ,v : f 7→ ∂1−s
v [Ũs(φ−1)f ](0),

with φ ∈ Ãut(Bn+1) and v ∈ Cn+1. It is clear that Yφ,v is a di�erential operator at w, and that its highest order term is

(Jφ−1)s/(n+2)(0)∂1−s
(φ−1)′(0)v

. Since Yφ,v induces a continuous linear functional on X, it must vanish on P1−s, so that it cannot

have lower order terms.
17When s = 0, this means that fk = 0 for every k ⩾ 1.
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7. Appendix: Mean-Periodic Functions

In this appendix, for future reference, we let D be a general Siegel domain, so that

D = { (ζ, z) ∈ Cn × Cm : Im z − Φ(ζ) ∈ Ω },
where Ω ⊆ Rm is an open convex cone not containing a�ne lines (R∗

+ in the cases considered in this paper)

and Φ : Cn → Cm is a non-degenerate hermitian quadratic form such that Φ(ζ) ∈ Ω for every ζ ∈ Cn (the
scalar product on Cn in the cases considered in this paper). In this case, we then set ρ(ζ, z) = Im z − Φ(ζ)
for every (ζ, z) ∈ D. We shall de�ne N := Cn ×Rm, endowed with the group structure given by

(ζ, x)(ζ ′, x′) = (ζ + ζ ′, x+ x′ + 2ImΦ(ζ, ζ ′))

for every (ζ, x), (ζ ′, x′) ∈ N . If we endow Cn × Cm with the product

(ζ, z) · (ζ ′, z′) = (ζ + ζ ′, z + z′ + 2iΦ(ζ ′, ζ))

for every (ζ, z), (ζ ′, z′) ∈ Cn × Cm, then D is a semigroup of Cn × Cm and N may be identi�ed with the
subgroup ρ−1(0) of Cn × Cm by means of the isomorphism (ζ, x) 7→ (ζ, x + iΦ(ζ)). Then, N acts on D
by a�ne biholomorphisms. We shall denote by Gδ the group of a�ne automorphisms of D which is the
semi-direct product of N and the group of the dilations R · (ζ, z) = (Rζ,R2z).

We now present some results which may be interpreted in the spirit of the study of mean-periodic functions
(cf., e.g., [35]). We shall actually give a reasonable description of all mean-periodic functions in Hol(D) with
respect to the group Gδ, acting by composition.

Proposition 7.1. Let V be a closed Gδ-invariant subspace of Hol(D). Then, V = P ∩ V , where P denotes
the space of (holomorphic) polynomials on D and P ∩ V denotes the closure of P ∩ V in Hol(D).

Proof. Consider the duality between Hol(D) and the space E ′
0(D) of compactly supported Radon measures

on D, induced by the natural inclusion of Hol(D) in the space C(D) of continuous functions on D and
the natural duality between C(D) and E ′

0(D). Observe that a vector subspace of Hol(D) is closed if and
only if it is weakly closed with respect to this duality, so that, in particular, V = V ◦◦, where V ◦ =
{ µ ∈ E ′

0(D) : ∀f ∈ V ⟨µ, f⟩ = 0 } denotes the polar of V , and V ◦◦ its bipolar. Then, take µ ∈ V ◦, and
consider, for every f ∈ V , the function

Ff,µ : D − (0, iv) ∋ (ζ, z) 7→
∫
Supp(µ)

f((ζ, z) · (ζ ′, z′)) dµ(ζ ′, z′),

where v ∈ Ω is such that Supp(µ) ⊆ (0, iv) +D. Observe that clearly Ff,µ is well de�ned and holomorphic
in the second variable. It is actually real analytic, but we shall not need this fact.

Then, observe that Ff,µ(ζ, x+ iΦ(ζ)) = 0 for every (ζ, x) ∈ N , so that, by the holomorphy in the second
variable, Ff,µ(ζ, z) = 0 for every (ζ, z) ∈ D − (0, iv). Consequently, the arbitrariness of µ implies that
f((ζ, z) · ) ∈ V for every (ζ, z) ∈ D.

Now, observe that

dk

dRk
f((ζ, z) · [R · (ζ ′, z′)]) =

∑
k1+2k2=k

k!

k1!k2!
f (k1+k2)((ζ, z)[R · (ζ ′, z′)]) · (ζ ′, 2Rz′)k1 · (0, z′)k2

for every k ∈ N, for every R > 0, and for every (ζ, z), (ζ ′, z′) ∈ D, so that passing to the limit for R → 0+,
we see that the polynomial mapping

Pf,k,(ζ,z) : (ζ
′, z′) 7→

∑
k1+2k2=k

1

k1!k2!
f (k1+k2)(ζ, z) · (ζ ′, 0)k1 · (0, z′)k2 =

∑
k1+2k2=k

1

k1!k2!
∂k1

(ζ′,0)∂
k2

(0,z′)f(ζ, z)

belongs to V for every k ∈ N and for every (ζ, z) ∈ D. Observe that, at least formally,∑
k

Pf,k,(ζ,z) =
∑
k

∑
k1+k2=k

1

k1!k2!
f (k)(ζ, z) · (ζ ′, 0)k1 · (0, z′)k2 =

∑
k

1

k!
f (k)(ζ, z) · (ζ ′, z′)k,
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so that f =
∑

k Pf,k,(ζ,z) on every open set where the sum converges absolutely; in particular, on every open
ball centred at (ζ, z) whose closure is contained in D. In a similar way, by translation one sees that the same
holds on (ζ, z) · B, where B is an open Euclidean ball centred at (0, 0) such that the closure of (ζ, z) · B is
contained in D.

Now, take f ∈ V and µ ∈ (P∩V )◦. In addition, take R > 0 so that Supp(µ) is contained in the Euclidean
ball BE×FC((0, 0), R) of centre (0, 0) and radius R, and observe that, if z ∈ D and ρ(ζ, z) is su�ciently large,
then (the closure of) (ζ, z) · BE×FC((0, 0), R) is contained in D. Observe that

∫
Pf,k,(ζ,z) dµ = 0 for every

k ∈ N and for every (ζ, z) ∈ D, thanks to the preceding remarks. Since Pf,k,(ζ,z) = Pf((ζ,z) · ),k,(0,0) and the
series

∑
k Pf((ζ,z) · ),k,(0,0) converges uniformly to f((ζ, z) · ) on (ζ, z)·BE×FC((0, 0), R) (if ρ(ζ, z) is su�ciently

large) by the preceding remarks, we conclude that Ff,µ(ζ, z) = 0 if ρ(ζ, z) is su�ciently large. Since Ff,µ is
holomorphic in the second variable, this is su�cient to conclude that Ff,µ = 0. In particular, Ff,µ(0, 0) = 0,

that is,
∫
f dµ = 0. Therefore, the arbitrariness of µ implies that f ∈ P ∩ V . The arbitrariness of f then

shows that V = P ∩ V . □

Corollary 7.2. The space P of holomorphic polynomials on D is dense in Hol(D).

Corollary 7.3. Let V be a closed Gδ-invariant subspace of Hol(D). Then, there is a set I of homogeneous18

distributions on N supported in { (0, 0) } such that

V = { f ∈ Hol(D) : f ∗ I = 0 }.
Proof. Observe that, if I is a set of homogeneous distributions on N , supported in { (0, 0) }, then VI :=
{ f ∈ Hol(D) : f ∗ I = 0 } is a closed Gδ-invariant subspace of Hol(D). By Proposition 7.1, we only need to
show that P ∩ V = P ∩ VI for a suitable I.

For every k ∈ N, denote by Pk the space of holomorphic polynomials on E×FC which are homogeneous of
degree k with respect to the dilations R ·(ζ, z) = (Rζ,R2z), and observe that P∩V =

⊕
k Pk∩V since P∩V

is dilation-invariant. Observe that, if Ik denotes the space of homogeneous distributions on N of degree k
supported in { (0, 0) }, then ⟨Ik,Pk′⟩ = 0 if k ̸= k′, by homogeneity, and that the canonical pairing between
Pk and Ik induces an isomorphism of P ′

k with a quotient of Ik (with Ik, if n = 0). Consequently, for every
k ∈ N, we may �nd a subset I ′

k of Ik such that Pk ∩V = Pk ∩I ′◦
k . Hence, P ∩V =

⋂
k∈N I ′◦

k = (
⋃

k∈N I ′
k)

◦.

Then, set I :=
⋃

k∈N Ǐ ′
k, where ˇdenotes the action of the inversion (ζ, x) 7→ (ζ, x)−1 = (−ζ,−x), and let us

prove that P ∩ V = P ∩ VI′ . Take P ∈ P ∩ V , and observe that, since P ∩ V is invariant under the action
of N , also P ((ζ, z) · ) ∈ P ∩ V for every (ζ, z) ∈ E × FC, with the notation of the proof of Proposition 7.1
(cf. the proof of Proposition 7.1 or argue directly using Taylor's formula), so that

(P ∗ I)(ζ, z) = ⟨Ǐ , P ((ζ, z) · )⟩ = 0

for every I ∈ I, so that P ∈ VI by the arbitrariness of (ζ, z) ∈ D and I ∈ I. Conversely, take P ∈ VI . Then,
for every I ∈ I,

⟨Ǐ , P ⟩ = (P ∗ I)(0, 0) = 0

by continuity (or holomorphy), so that P ∈ P ∩ V . □
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