Background Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated.Objectives To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD.Methods From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-sociocultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS- PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD.Results Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 +/- 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1 beta, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i. e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL- 8, IL-23.Conclusions Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non- obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations.[Graphics].
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease / V. Raparelli, G.F. Romiti, G. Di Teodoro, R. Seccia, G. Tanzilli, N. Viceconte, R. Marrapodi, D. Flego, B. Corica, R. Cangemi, L. Pilote, S. Basili, M. Proietti, L. Palagi, L. Stefanini. - In: CLINICAL RESEARCH IN CARDIOLOGY. - ISSN 1861-0684. - (2023), pp. 1-15. [Epub ahead of print] [10.1007/s00392-023-02193-5]
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
M. Proietti;
2023
Abstract
Background Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated.Objectives To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD.Methods From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-sociocultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS- PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD.Results Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 +/- 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1 beta, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i. e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL- 8, IL-23.Conclusions Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non- obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations.[Graphics].File | Dimensione | Formato | |
---|---|---|---|
s00392-023-02193-5.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.