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Abstract
Background Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and 
the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated.
Objectives To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive 
CAD.
Methods From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography 
(CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-
cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to 
GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow 
cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identi-
fied the most influential features in discriminating obstructive versus non-obstructive CAD.
Results Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive 
CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstruc-
tive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and 
IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to 
women) and with a cytokine signature characterized by IL-18, IL-8, IL-23.
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Conclusions Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased 
model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biologi-
cal plausibility of these associations.
Clinical trial registration NCT02737982.
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Introduction

Although adverse clinical outcomes from ischemic heart dis-
ease (IHD) have been on a linear decline over the last dec-
ade, the burden remains high in both females and males [1]. 
Heterogeneity in manifestations, prognosis, and response to 
treatments for IHD between males and females have been 
reported, with females less likely receiving high-quality 
cardiovascular care [2]. The reasons behind such disparities 
might stand on how biological sex and sociocultural gender 
(i.e., identity, roles, relations, and institutionalized gender) 

interact in shaping the development and the progression of 
IHD [3]. The unmet need to foster the collection of sex- and 
gender-unbiased data to inform our understanding of dis-
eases has surged to improve outcomes and personalize the 
management of IHD patients in the era of precision medi-
cine [4]. In this respect, machine-learning (ML) techniques 
have boosted our ability to predict outcomes; nevertheless, 
to obtain fair and equitable algorithms, the wealth of fea-
tures used for training the models should be representative 
of the biological, functional, and sociocultural complexity 
to overcome selection biases [5].
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IHD is not anymore synonymous with obstructive flow-
limiting coronary artery disease (CAD), especially in 
females that are more commonly affected by non-obstructive 
disease [6]. The absence of obstructive CAD (i.e., < 50% 
diameter reduction at invasive coronary angiography) sug-
gests the need to improve imaging tests to identify the dif-
ferent endotypes of either chronic or acute ischaemia with 
non-obstructed coronary arteries [7]. Furthermore, the 
mechanisms of myocardial ischemia in patients with or with-
out obstructive CAD, including the key role of inflammation 
pathways [8, 9], are still far to be fully elucidated. Targeting 
individual interleukins (IL) in patients with atherothrom-
botic residual risk despite evidence-based standard ther-
apy, has achieved a lower effect than expected (e.g., only 
a 15% risk reduction of adverse events in patients treated 
with canakinumab, an IL-1β blocker) suggesting that other 
products of the inflammasome might be involved, such as 
IL-18 [10], and that individuals may have distinct cytokine 
signatures depending on the type of CAD. Of note, while 
the role of inflammation in atherosclerotic obstructive CAD 
is well established, little is known on the inflammatory bur-
den associated with non-obstructive CAD. As females are 
less likely to develop atherosclerosis [11], it is biologically 
plausible that other thrombo-inflammatory mechanisms 
sustain the ischemia. To better the multifaced complexity 
of CAD phenotypes throught a sex- and gender-unbiased 
approach, we developed a ML-based model for the super-
vised prediction of the clinical, functional, biological, and 
psycho-social features associated with non-obstructive and 
obstructive CAD among a consecutive unselected cohort of 
adults hospitalized for IHD.

Methods

Study population

The “Endocrine Vascular disease Approach” (EVA) project 
(ClinicalTrials.gov identifier NCT02737982), is an obser-
vational, prospective study, aimed at exploring sex- and 
gender-related differences in the interaction between plate-
let function, sex hormone balance, and coronary microvas-
cular dysfunction in IHD. Study design of EVA has been 
previously published [12]. Briefly, EVA is an observational 
registry of individuals (> 18 years), who were referred to 
the cardiac catheterization laboratory for undergoing con-
ventional coronary angiography (CCA) and/or percutaneous 
coronary intervention for either acute coronary syndrome 
(ACS) or stable angina. In-patient and outpatients were 
recruited at the University Hospital Policlinico Umberto I 
of Rome, Italy, between April 2016 and March 2020. Based 
on angiography, we have classified IHD patients as follows: 
(1) ischemia with obstructive CAD, that is ≥ 50% diameter 

stenosis; and (2) ischemia with non-obstructive CAD, 
that is < 50% diameter stenosis [11]. A multidimensional 
approach was applied to collect a granularity of participants’ 
characteristics including clinical, laboratory and treatment 
variables. The study was conducted in full conformance 
with the principles of the Declaration of Helsinki, and it 
was approved by the local Ethics Committee of Policlinico 
Umberto I, Sapienza University of Rome, Rome, Italy (refer-
ence 3786, 24/09/2015). Written informed consent has been 
obtained from all patients.

Calculation of the gender score

At enrolment, gender-related variables pertinent to the four 
domains gender encompasses (i.e., identity, roles, relations, 
institutionalized gender) [13] were collected. The GENE-
SIS-PRAXY methodology provided the framework used to 
generate a composite measure of gender [14, 15] (Supple-
mental Material, Appendix A, Supplemental Table 1 and 2). 
Briefly, Principal component analysis (PCA) methodology 
was used to select the unique set of covariates that accounted 
for a cumulative variance of greater than 80% of the data. 
The optimized set of gender-related variables were used to 
create a multivariable logistic model with biological sex as 
the dependent variable and gender-derived components as 
covariates. A gender score was calculated through the con-
struction of a propensity score that defined the conditional 
probability of being a female versus a male using gender-
related variables. This score ranges from 0 to 100, with 
higher scores relating to characteristics traditionally ascribed 
to women. Among the EVA participants, the eight variables 
that were independently associated with biological sex and 
included in the EVA gender score (according to their own 
weight based on their coefficient estimate) were: (1) engage-
ment in social leisure activities (including sports of moder-
ate/strenuous intensity, dancing); (2) being married or living 
with a partner; (3) responsibility for housework; (4) house-
work hours; (5) being the primary earner of the household; 
(6) level of stress home; (7) emotional support received (i.e. 
level of emotional support); (8) trust and confidence (i.e. 
someone available that you can trust and confide in).

Rockwood frailty index

Frailty was assessed according to a 50-item frailty index 
(FI) (Supplemental Material, Appendix B, Supplemental 
Table 3), built on the model designed by Rockwood and 
Mitnitsky [16, 17]. FI was computed based on a multi-
dimensional evaluation that included patients’ comor-
bidities, baseline biomarkers, reported symptoms, level 
of autonomy in activities of daily living and perceived 
stress. Concomitant comorbidities were assessed at base-
line during clinical interview, with each comorbidity 
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considered as a possible single deficit. Haemoglobin, 
neutrophil/lymphocyte ratio, c-reactive protein, creatinine 
clearance according to CKD-EPI formula and plasmatic 
albumin were assessed as biomarkers. Each biomarker 
was categorized and scored as a single possible deficit, as 
reported in Supplementary Table 3. Autonomy of patients 
was assessed according to the Duke Activity Status Index 
(DASI) score [18], with each item considered as a single 
possible deficit. Chest pain at index event was assessed 
according to the Rose Angina Questionnaire [19], with 
each item considered as a single possible deficit. Patients’ 
perceived stress was evaluated according to the perceived 
stress scale (PSS-10) [20], with each item considered as 
a single possible deficit. Calculation of FI was performed 
as the ratio of the total deficit found for each patient over 
the total number of possible deficits examined. According 
to the usual clinical use, a FI ≥ 0.25 was considered as a 
cut-off to define presence of Frailty [21].

Inflammatory cytokines profiling

The concentration of inflammatory cytokines was assessed 
in serum samples by multiplex bead-based flow cytometric 
assay (Biolegend, Inflammation Panel I, catalogue num-
ber 740809), according to the manufacturer instructions. 
Arterial blood was collected from the coronary circulation 
during the angiography and before PCI. Within 2 h from 
withdrawal, blood was centrifuged for 20 min at 2000 g and 
coded serum samples were stored at − 80 °C until batch 
analysis. According to a previous study, the arterial samples 
are suitable for testing biomarkers of platelet function and 
cytokines [22].

After thawing, the serum samples were immediately cen-
trifuged at maximum speed and transferred to new tubes. A 
small volume of each serum (25 μl) was diluted 1:1 in Assay 
buffer provided in the kit. Each serum was incubated with 13 
bead populations distinguished by size and internal APC flu-
orescent dye, which bind to 13 distinct human inflammatory 
cytokines and chemokines, including IL-1β, IFN-α2, IFN-γ, 
TNF-α, MCP-1 (CCL2), IL-6, IL-8 (CXCL8), IL-10, IL-
12p70, IL-17A, IL-18, IL-23, and IL-33. The following day 
the beads were incubated first with cytokine-specific bioti-
nylated antibodies and then with Streptavidin–phycoeryth-
rin and immediately acquired at a BD Accuri C6 Plus flow 
cytometer. Cytokine-specific populations were segregated 
based on the size and internal APC fluorescence intensity. 
The concentration of a particular cytokine was quantified 
based on the PE fluorescent signal according to a stand-
ard curve generated in the same assay. Measurements were 
ascertained while blinded to the sample origin. All samples 
were assayed in duplicate, and those showing values above 
the standard curve were retested with appropriate dilutions.

Statistical analysis

Univariate descriptive analysis of the baseline clinical, bio-
logical, functional, and psycho-social variables by type of 
CAD was performed. Normality for continuous variables has 
been assessed using the Kolmogorov–Smirnov test. Con-
tinuous data are represented as mean and standard devia-
tion (SD) or median and interquartile range (IQR) (25th, 
75th percentile) and compared with two-tailed t tests or 
Mann–Whitney tests, as appropriate. Categorial variables 
are presented as number of participants (percentage) and 
compared using chi-square test. Only p values < 0.05 are 
regarded as statistically significant. Analyses have been per-
formed using Graph-Pad Prism 9.0 and SPSS v. 25.0 (IBM, 
NY, USA).

Machine learning CAD classification model

Briefly, the steps to define and optimize the ML-based 
model are summarized in Fig. 1.

Data pre‑processing and analysis

The initially available dataset consisted of 509 patients with 
18 features (i.e., sex, gender score, FI, age, Body Mass Index 
[BMI], IL-1β, IFN-α2, IFN-γ, TNF-α, MCP1, IL-6, IL-8, 
IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33).

Data were pre-processed to overcome quality issues due 
to limitations of measurement devices, human errors, or 
problems in the data collection process. In particular, 15 
more patients were removed from the dataset by means of 
physicians’ expertise since the values of at least one feature 
were clearly incorrect resulting in a dataset of 494 patients. 
Over the 494 available patients, we eliminated those that 
had more than 12 features (over the 18) reporting a null 
value, because it makes no sense to impute more than 66% 
of the values. Among the remaining 339 patients, further 28 
patients had at least one missing feature. We considered the 
possibility of imputing the missing features using different 
rules. However, this did not improve the results, as reported 
in the Supplemental Table 4, and we did not consider impu-
tation in the final results.

As a first step, a linear correlation analysis was con-
ducted, and the Pearson correlation matrix (Supplemental 
Fig. 1) was constructed to check the existence of linear cor-
relation among features. Of note, we observed an expected 
high linear correlation between sex and gender score. Hence, 
we decided to keep the gender score in the model. In order to 
improve the performance and training stability of the model, 
the features it the dataset were standardized so they have a 
mean of zero and a variance of one.

As the final dataset (n = 311) turned out to be imbalanced, 
for a prevalence of patients with obstructive CAD (67.5%), 
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we applied both undersampling or oversampling procedures, 
such as SMOTE (Synthetic Minority Over-sampling Tech-
nique) [23]; this procedure did not improve model perfor-
mance on the dataset and resampling techniques performed 
less efficiently than the usage of the original imbalanced 
database. Thus, none of these techniques were used.

Machine learning model choice, tuning, and testing

The 311 patients were used to train and test a supervised 
classification ML model (Fig. 1). Several classification mod-
els were tested (from Logistic Regression [LR] to more com-
plex ML models such as Support Vector Machines, Random 
Forest [RF] and ensemble methods, etc.) in order to select 
the best model in extracting underlying patterns linking the 
bio-psycho-social features in input with the outcome of type 
of CAD.

Data were split so that 75% of the data were used as 
training-validation set while the remaining 25% was put 
aside and used as test set to check the quality of the model 
obtained, that is its capability to correctly predict the out-
come of unseen patients. We provide in the supplementary 
material the Supplemental Table 5 with baselines of both 

training and test cohorts to show that there are no significant 
differences.

Each ML model relies on some hyperparameters that 
need to be set. Several configurations of hyperparameters 
were assessed to find the optimal set. In particular, a ran-
dom-search hyperparameter tuning was applied and the best 
setting was selected based on best Key Performance Indica-
tors (KPIs) evaluated on average using a fivefold cross-vali-
dation. The performance on the associated testing risk scores 
was reported too. The metrics used to assess the quality of 
the models and compare them, and the features selection 
process are specified in the online supplement (Supplemen-
tal Figs. 2, 3). Extreme gradient boosting (XGBoost) [24], 
already successfully applied in various medical applications 
[25], was the most performing prediction model. The Python 
version implemented in the library xgboost, version 1.2.1, 
was used.

Shapley values and features of importance 
in the analysis

To provide an interpretable prediction model, we adopted 
the Tree SHAP (SHapley Additive exPlanations) [26] for 
tree-based machine-learning models [27, 28]. For each 

Fig. 1  Definition of the machine-learning classification model. Sche-
matic representation of the working process to define and optimize 
the ML-based model. After data pre-processing, 75% of the data is 
used to train an XGBoost model including the tuning of the hyper-
parameters by means of a fivefold cross-validation procedure. The 
hyperparameters that give the best average validation values of the 

key performance indicators are chosen and the model is retrained on 
the full training set with the optimal setting. Eventually, the model is 
deployed and used to predict the type of CAD of the patients in the 
test set (25% of data) and the final performance (accuracy and preci-
sion) of the model is determined
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patient in the dataset, SHAP aims to compute, in principle, 
the contribution of each feature in making the model return 
a certain output and produces a graphical representation of 
the feature’s importance. In fact, each feature is shown on 
the vertical axes of a graph where the higher is the posi-
tion (ranking), the more influential is the characteristic. In 
the graph for each feature (namely on the horizontal lines), 
the dots represent patients, and the colour indicates whether 
the value of the characteristic considered is high or low in 
relation to the range of values (red refers to high values and 
blue to low values). The graph has a median line and the 
farther the point is from the median line, the stronger is the 
influence on the output, with the points on the right correlat-
ing positively with obstructive CAD and the points on the 
left negatively, thus predicting the opposite outcome (non-
obstructive CAD).

Results

Among the overall EVA cohort (n = 509), 311 individuals 
(mean age 67 ± 11 years, 38% females; 67% obstructive 
CAD) with complete data on the features included in the 
ML model were analysed.

The baseline characteristics of the cohort by type of CAD 
are summarized in Table 1. Adults with non-obstructive 
CAD were more likely females, younger, with a lower BMI 
and burden of comorbidities as compared with individuals 
with obstructive CAD. The clinical presentation was less 
frequently an ACS, with a lower percentage of individu-
als with STEMI in non-obstructive CAD individuals and 
less prior history of IHD than those with obstructive CAD. 
Conversely, they had more likely a higher gender score (i.e., 
social characteristics traditionally ascribed to women), and a 
higher frailty index (i.e., low physiological reserve).

Individuals with non‑obstructive CAD have 
a distinct cytokine signature versus those 
with obstructive CAD

We measured the concentration of 13 cytokines/chemokines 
in coronary serum samples collected at T0. On average, we 
detected elevated levels of IL-6 in both obstructive and non-
obstructive CAD patients (median [IQR]: 12.2 [0.0–31.4] 
pg/ml in non-obstructive CAD; 8.5 [0.4–23.5] pg/ml in 
obstructive CAD; p = 0.96) suggesting that both conditions 
are associated to a state of low-grade inflammation (Fig. 2).

The same pattern was shared between the sexes, how-
ever, female patients had a higher inflammatory burden 
(Fig. 3), as they displayed significantly higher levels of 
IFN-γ (median [IQR]: 0.1 [0.0–2.2] pg/ml in females; 0.0 
[0.0–0.8] pg/ml males; p = 0.0381), IL-12 (median [IQR]: 
3.8 [0.5–7.7] pg/ml in females; 1.8 [0.5–4.9] pg/ml males; 

p = 0.0455), IL-23 (median [IQR]: 0.0 [0.0–13.4] pg/ml in 
females; 0.0 [0.0–0.0] pg/ml males; p = 0.0455) and IL-33 
(median [IQR]: 50.8 [29.3–118.5] pg/ml in females; 42.7 
[16.7–91.5] pg/ml males; p = 0.0455), compared to male 
patients.

Elevated concentration of IL-6 (median [IQR]: 7.9 
[0.0–23.2] pg/ml in stable CAD; 11.1 [1.7–31.4] pg/ml 
in acute CAD; p = 0.048) was the only feature that sig-
nificantly discriminated those individuals presenting with 
ACS (Fig. 4). Conversely, we detected several differences 
in the cytokine serum concentration between obstruc-
tive and non-obstructive CAD patients. Specifically, we 
found significantly higher levels of IL-18 (median [IQR]: 
142.7 [87.65–247.8] pg/ml in non-obstructive CAD; 101.1 
[51.41–201.1] pg/ml in obstructive CAD; p = 0.0033) 
and IL-23 (median [IQR]: 0.0 [0.0–10.87] pg/ml in non-
obstructive CAD; 0.0 [0.0–5.72] pg/ml in obstructive 
CAD; p = 0.0384) in patients with non-obstructive CAD, 
and higher concentrations of IL-1β (median [IQR]: 0.0 
[0.0–3.47] pg/ml in non-obstructive CAD; 1.07 [0.0–2.69] 
pg/ml in obstructive CAD; p = 0.0208) and IFN-γ (median 
[IQR]: 0.0 [0.0–0.83] pg/ml in non-obstructive CAD; 0.0 
[0.0–1.38] pg/ml in obstructive CAD; p = 0.0469) in patients 
with obstructive CAD.

ML‑based model for the prediction 
of non‑obstructive and obstructive coronary artery 
disease

We initially applied the XGBoost method in connection 
with the SHAP tools to identify clusters of cytokines that 
associate with non-obstructive (negative SHAP value) or 
obstructive (positive SHAP value) CAD. As a first analysis, 
we trained a prediction model, only providing cytokines data 
as features and we observed that obstructive CAD associates 
with high concentrations of IL-1β, IL-12, IL-33, IL-10, IFN-
γ, and MCP-1, while non-obstructive CAD is more likely 
to associate with high levels of IL-23, IFN-α2, IL-18, IL-8, 
IL-6, TNF-α and IL-17a. However, the model including 
only biological data achieved a modest prediction accuracy 
(70.5%) and precision (75.9%) (Supplemental Fig. 4).

To pursue a more holistic representation of adults with 
CAD, we included the following features: age, gender score 
and frailty index. Introducing these composite measures of 
individuals’ complexity into the XGBoost model substan-
tially improved the accuracy (79.5%) and precision (83.6%) 
(Supplemental Fig. 5).

Finally, to optimize the model that would discriminate 
obstructive from non-obstructive CAD with the minimal 
amount of information, we excluded features that appeared 
to be less influential in discriminating CAD according to 
the SHAP plot and that were redundant based on estab-
lished relationships between cytokines. Namely, we did 
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not include those features that were lower along the verti-
cal axis (i.e., less important in discriminating CAD types) 
and those that distributed near the mid-line of the SHAP 
plot (i.e., correlated poorly with either one of the CAD 
types). For example, IL-17A was the lowest ranking fea-
ture both in the SHAP plot with cytokines alone and in the 
full features SHAP graph; further, it clustered around the 

mid-line, thus having a low Shapley value. In many inflam-
matory states, IL-17A correlates with IL-23, that is the 
main cytokine regulating IL-17-producing T helper cells 
(Th17). Being upstream, IL-23 is likely to control more 
signalling pathways than IL-17A, and therefore, to provide 
more biological information. Thus, IL-17A was selected 

Table 1  Baseline features of the 311 individuals with ischemic heart disease stratified by type of CAD

BMI body mass index; IQR interquartile range; IHD ischemic heart disease; AMI acute myocardial infarction; CAD coronary artery disease; 
COPD chronic obstructive pulmonary disease; DAPT dual antiplatelet therapy; Hx history; PAD TIA, transient ischemic attack; SD standard 
deviation; STEMI ST elevation myocardial infarction, PCI percutaneous coronary intervention
§ Peripheral artery disease and/or Abdominal Aortic Aneurysm, and/or Carotid Stenosis

Overall cohort
(n = 311)

Non-obstructive CAD
(n = 101)

Obstructive CAD
(n = 210)

P value

Clinical variables
Age (years), median [IQR] 68.0 [60.0, 75.0] 65.0 [56.0, 73.0] 69.5 [61.3, 76.0] 0.002
Female sex, n (%) 117 (37.6) 48 (47.5) 69 (32.9) 0.018
BMI (median [IQR]) 26.6 [24.2, 29.7] 25.9 [23.4, 28.8] 26.9 [24.7, 30.1] 0.029
Family Hx CVD, n (%) 193 (62.1) 61 (60.4) 132 (62.9) 0.769
Smoking, n (%) 76 (24.7) 25 (24.8) 51 (24.6) 1.000
Hypertension, n (%) 243 (78.1) 67 (66.3) 176 (83.8) 0.001
Heart failure, n (%) 35 (11.3) 9 (9.0) 26 (12.4) 0.492
Dyslipidaemia, n (%) 152 (49.0) 34 (33.7) 118 (56.5)  < 0.001
Type 2 diabetes, n (%) 82 (26.4) 16 (15.8) 66 (31.4) 0.005
Known IHD, n (%) 98 (31.5) 18 (17.8) 80 (38.1) 0.001
Prior AMI, n (%) 67 (21.5) 12 (11.9) 55 (26.2) 0.006
Vascular  disease§, n (%) 77 (24.8) 11 (10.9) 66 (31.4)  < 0.001
Prior stroke/TIA, n (%) 32 (10.3) 9 (8.9) 23 (11.0) 0.722
Dementia, n (%) 0 (0) 0 (0) 0 (0) NA
End-stage chronic kidney/dialysis, n (%) 4 (1.3) 2 (2.0) 2 (1.0) 0.829
COPD, n (%) 33 (10.6) 13 (12.9) 20 (9.5) 0.483
Acute coronary syndrome, n (%) 165 (53.1) 41 (40.6) 124 (59.0) 0.003
STEMI, n (%) 24 (7.7) 2 (2.0) 22 (10.5) 0.016
Gender-related variables
Gender score (median [IQR]) 0.22 [0.06, 0.62] 0.37 [0.09, 0.71] 0.17 [0.05, 0.57] 0.009
Primary responsibility for doing housework, n (%) 129 (41.5) 56 (55.4) 73 (34.8) 0.001
Being married or living with partner, n (%) 215 (69.1) 59 (58.4) 156 (74.3) 0.007
Primary earner status, n (%) 200 (64.3) 64 (63.4) 136 (64.8) 0.909
Engagement in recreational social activities, n (%) 165 (53.1) 58 (57.4) 107 (51.0) 0.342
Emotional support received (range 1–5) (median [IQR]) 4 [3, 5] 4 [4, 5] 4 [3, 5] 0.182
Number of hours spent for household chores (median [IQR]) 6 [2, 14] 7 [2, 15] 6 [2, 14] 0.340
Trust and Confidence in someone (range 1–5) (median [IQR]) 4 [4, 5] 4 [4, 5] 4 [4, 5] 0.091
Level of stress at home (range 1–10) (median [IQR]) 2 [1, 5] 3 [1, 5] 2 [1, 4] 0.025
Physiological reserve
Frailty index (median [IQR]) 0.31 [0.22, 0.39] 0.25 [0.19, 0.34] 0.33 [0.25, 0.42]  < 0.001
Number of available items of frailty index (range 0–50) (median 

[IQR])
48 [39.5, 49] 48 [40, 49] 40 [39, 49] 0.009

Percentage of available items (%) 0.006
‒50% 2 (0.6) 0 (0.0) 2 (1.0)
‒70–79% 76 (24.4) 14 (13.9) 62 (29.5)
‒80–100% 233 (74.9) 87 (86.1) 146 (69.5)
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out. Similarly, we excluded IFN-γ that is produced by type 
1T helper cells (Th1) downstream of IL-12 stimulation.

We also excluded those cytokines that despite having a 
relatively high ranking in the SHAP plot had average con-
centrations comparable to healthy subjects, such as IFN-α2, 
or that substantially reduced the accuracy and the precision 
of the model, as for the anti-inflammatory cytokine IL-10. 
The full list of the trials is reported in Supplemental Table 6. 
Ultimately, we achieved (see quality assessment in meth-
ods section) the final model that includes nine features (i.e., 
gender score, age, frailty index, IL-1β, IL-18, IL-8, IL-23, 

IL-12p70, IL-33) and that could discriminate between 
obstructive and non-obstructive CAD with 83% accuracy 
and 87% precision (Fig. 5).

Furthermore, we tested the effect of adding IL-6, the most 
widely used cytokine biomarker of IHD, in the final model 
but this resulted in a reduction of the accuracy (79.5%) and 
the precision (84.9%) (Supplemental Fig. 6).

In Supplemental Tables 7 and 8, we compared the perfor-
mance of the chosen XGBoost method versus RF or a LR 
model using the nine features selected and the ROC curve as 
a KPI. Thus, we  proved that the chosen method outperforms 

Fig. 2  Cytokine profile of obstructive and non-obstructive CAD 
patients. Violin plots display in logarithmic scale the concentra-
tion (pg/ml) of 13 cytokines measured by multiplex bead-based 
flow cytometric assay in coronary serum samples of non-obstructive 
(NO; < 50% diameter stenosis) or obstructive (O; ≥ 50% diameter ste-

nosis) CAD patients. A straight line indicates the median and the dot-
ted lines show the interquartile range (IQR) (25th, 75th percentile). 
The significance of differences between median values was tested by 
Mann–Whitney tests for independent samples (*p ≤ 0.05, **p ≤ 0.01)

Fig. 3  Cytokine profile of female and male individuals with CAD. 
Violin plots display in logarithmic scale the concentration (pg/ml) 
of 13 cytokines measured by multiplex bead-based flow cytometric 
assay in coronary serum samples of female (F) and male (M) CAD 

patients. A straight line indicates the median and the dotted lines 
show the interquartile range (IQR) (25th, 75th percentile). The sig-
nificance of differences between median values was tested by Mann–
Whitney tests for independent samples (*p ≤ 0.05, **p ≤ 0.01)
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more traditional statistical learning models (Supplemental 
Fig. 7). We also tested if a model including only frailty, age, 
and gender, without the biological variables, would have 
been fair but the results decreased both in accuracy (70.4%) 
and precision (71.4%) (Supplemental Table 9).

Finally, we used the selected nine features to construct 
two separate models for patients presenting with acute or 
stable CAD, respectively. Interestingly, we found that the 
correlations between CAD type and high cytokine concen-
trations were almost unchanged when considering patients 
with acute presentation as compared with the entire cohort 

Fig. 4  Cytokine profile of patients with acute and stable CAD. Vio-
lin plots display in logarithmic scale the concentration (pg/ml) of 13 
cytokines measured by multiplex bead-based flow cytometric assay in 
coronary serum samples of CAD patients with acute (A) or stable (S) 

presentation. A straight line indicates the median and the dotted lines 
show the interquartile range (IQR) (25th, 75th percentile). The sig-
nificance of differences between median values was tested by Mann–
Whitney tests for independent samples (*p ≤ 0.05)

Fig. 5  Machine-learning model that integrates biological, clini-
cal, functional and psycho-social features to predict obstructive and 
non-obstructive CAD. SHAP Plot of the best performing ML-based 
model. Each feature is shown on the vertical axes of a graph where 
the higher is the position (ranking), the more influential is the charac-
teristic. In the graph for each feature (namely on the horizontal lines) 
the dots represent patients, and the colour indicates whether the value 

of the characteristic considered is high or low in relation to the range 
of values (red refers to high values and blue to low values). The graph 
has a median line and the farther the point is from the median line, 
the stronger is the influence on the output, with the points on the right 
correlating positively with obstructive CAD and the points on the left 
negatively, thus predicting the opposite outcome (non-obstructive 
CAD)
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(Supplemental Fig.  8). Conversely, among stable CAD 
patients, high concentrations of all cytokines except IL-33 
were associated with obstructive CAD.

Discussion

In the present study, we developed an interpretable ML-
based model that discriminates non-obstructive and obstruc-
tive CAD through features that capture (i) the reduction of 
physiological functional reserve of individuals (i.e., frailty); 
(ii) the inflammatory burden of IHD; and (iii) the complexity 
that gender encompasses (identity, role, relations, and insti-
tutionalized gender). With a minimal number of nine vari-
ables, we have optimized a predictive model with 83% accu-
racy and 87% precision. In addition, we have gained insights 
on the complexity behind CAD. Some features spanning 
from biological to functional and gendered psycho-social 
factors can help to envision and test in further studies which 
of the input features were most influential in discriminating 
the two distinct types of CAD. We found that while obstruc-
tive CAD associates with increased frailty index, older age 
and a cytokine signature characterized by IL-1β, IL-12p70 
and IL-33, non-obstructive CAD is more likely to associate 
with a higher gender score and with a cytokine signature 
characterized by IL-18, IL-8, IL-23.

Despite advancements in therapeutics, CVD persists to be 
the leading cause of morbidity and mortality in both males 
and females worldwide. Nevertheless, sex differences have 
been reported in the clinical phenotype and trajectory of 
IHD [6]. Indeed, IHD is a multifactorial and complex con-
dition, that requires a multidimensional approach to better 
inform our understanding of myocardial ischemia. Non-
obstructive coronary atherosclerosis is becoming a fre-
quent finding in individuals with myocardial ischemia [29], 
especially females. Beyond biological sex, gender may play 
a role as well. Frequently, sex differences in disease and 
outcomes can be explained due to the gendered distribu-
tion of factors between men and women [30]. Although 
mechanisms of action are largely unclear, it is suggested that 
gender-related factors can further exacerbate the detrimental 
effect of established risk factors of CVD [30]. Commonly, 
the wealth of gender-related factors is not collected in clini-
cal studies with a consequential lack of testing the effect of 
gender on outcomes. Conversely, in the EVA study, variables 
capturing the four domains that gender encompasses where 
available. In the EVA project grounded on the prior work of 
the GENESIS-PRAXY experience [14, 15], we collected a 
wealth of gender-related variables and were able to construct 
the gender score (as reported in supplementary material) that 
defines the probability of being a man or a woman, based 
on the gendered features of the individuals. Therefore, the 
inclusion of the gender score in the modelling provides a 

more balanced and representative measure of the intersec-
tion between sex and gender in shaping coronary health. 
Moreover, the inclusion in the model of both would have 
generated collinearity issues for the methodology used to 
construct the score. Interestingly, in our model, the feminine 
gender score was a feature strongly associated with non-
obstructive CAD suggesting that bio-psycho-social charac-
teristics are modifiers of cardiovascular health.

In the last few years, the concept of frailty, originally 
conceived in the geriatric medicine field, gathered a lot of 
attention from the general medical audience. Frailty is con-
sidered as a medical syndrome characterized by a dimin-
ished strength, endurance and reduced physiological func-
tion that increases subjects’ vulnerability and entails and 
increased risk for disability and death [31, 32]. Application 
of the cumulative deficits model to measure frailty helps in 
performing a comprehensive evaluation of subjects’ physi-
ological function impairment [16, 17] and provides a frame-
work for the evaluation of biological ageing, as opposed to 
chronological ageing [33].

Even in the context of cardiovascular diseases, presence 
of frailty, irrespective of how it is measured, can discrimi-
nate those subjects at higher risk of adverse events, identify-
ing more compromised patients [34, 35].

Moreover, translational research highlighted that there is 
a close relationship between a systemic inflammatory sta-
tus, the ‘inflammageing’, and the presence of frailty [36]. 
According to that data, this chronic inflammatory status is 
highly associated with several components of the subjects’ 
physiological function (prevalent comorbidities, reduced 
muscle mass and strength, reduced mobility and impaired 
cognitive function). This entails a strong relationship 
between the inflammatory status and the presence of frailty. 
In this context, our data document how the level of frailty 
can directly affect the risk of developing a more severe cor-
onary disease, in relation with a pro-inflammatory set of 
cytokines and a deprived social condition.

We are currently conducting mechanistic studies to under-
stand the biological basis of these differences. Based on the 
data presented here, our working hypothesis is that different 
inflammatory responses are implicated in different types of 
CAD (Fig. 6, Graphical abstract). The cytokines included 
in our final predictive model do not reflect the full spectrum 
of inflammatory cytokines in the plasma of CAD patients, 
but only the few that discriminate between obstructive and 
non-obstructive CAD, independently from the patient clini-
cal presentation (acute/stable). Interestingly, although IL-6 
is the most studied inflammatory biomarker in IHD and we 
and others find it to be higher in acute presentations [37–40], 
it is not included in the final model as it is not informative 
to discriminate between obstructive and non-obstructive 
CAD, possibly because it participates to the pathogenesis of 
both types of CAD. Our results indicate the most important 
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cytokines identifying obstructive CAD are IL-1β, which was 
indeed chosen as the target of the first anti-inflammatory 
trial to treat atherosclerosis [8] and IL-12, that drives the 
CD4 + Th1 response, which is pro-atherogenic [41]. The 
cytokine signature of non-obstructive CAD is characterized 
by IL-18, IL-8 and IL-23. The combination of IL-18 and 
IL-23 can act synergistically to induce CD4 + Th17 cells 
and γδT cells to produce IL-17a [42]. The function of the 
IL-23/IL-17 signalling axis is controversial in atheroscle-
rosis [43] because, on one hand, it is atheroprotective by 
promoting collagen deposition and the formation of a thick 
fibrous cap that ensures plaque stability [44]. On the other 
hand, it promotes granulopoiesis [45] and, in synergy with 
TNF-α, induces the recruitment of neutrophils [46], which 
aggravate the inflammatory state. IL-18 has also been shown 
to stimulate endothelial cells to release IL-8 [47] (chemokine 
that recruits neutrophils), to expose adhesion molecules 
that facilitate the binding of platelets and neutrophils, and 
to induce endothelial cell apoptosis [48], which could con-
tribute to plaque erosion. Thus, while in obstructive CAD, 
the inflammatory response drives atherosclerosis and plaque 
rupture, in non-obstructive CAD, the inflammatory response 
induces neutrophil engagement, which could support throm-
bus formation even in the absence of an unstable plaque 
through mechanisms including the release of microparticles 
[49, 50] and/or neutrophil extracellular traps [51].

These observations support the idea that targeting inflam-
mation to reduce the risk of CVD could be a more successful 
strategy if we would target specific inflammatory pathways 
in a specific subset of patients. Subsequent analysis of the 
Canakinumab Anti-inflammatory Thrombosis Outcome 

Study revealed that inhibiting IL-1β does not modify the 
plasmatic levels of IL-18 [10]. Based on our data, IL-18 is 
more relevant than IL-1β in the pathogenesis of non-obstruc-
tive CAD, thus canakinumab may not protect from this type 
of CAD. Broader approaches like the NLRP3 inflammasome 
inhibitors could be effective in protecting a larger popula-
tion but could pose more risks. A more successful approach 
could be to target a specific cytokine in the subjects more 
at risk of one or the other CAD. In this study, we move one 
step forward in identifying potential precise targets. While 
canakinumab or IFN-γ inhibitors could be used to target 
specifically subjects at risk of obstructive CAD, therapeutics 
targeting IL-23/IL-17, developed to treat psoriasis, could 
be used to prevent specifically non-obstructive CAD [52].

The subjects that could benefit the most from this preci-
sion medicine approach would be women. In our study, we 
show that females with CAD have a greater inflammatory 
burden than males, confirming the generally accepted notion 
that female mount stronger immune responses than men [53] 
and suggesting that this predisposition might put them at 
higher risk of CAD with inflammatory pathogenesis.

Finally, our manuscript has significant implications 
from a clinical point of view. Indeed, the evidence that the 
complex interaction between biological age, inflammatory 
burden and psycho-social factors (as encompassed by the 
gender score) increases the risk of developing obstructive 
CAD, advocate the need for more integrated care strategies, 
which could comprehensively handle patient care with a 
holistic care approach. Embracing complexity and develop-
ing approaches that accounted for it are already strongly 
advised in the field of cardiovascular diseases [54] and now-
adays represents one of the standpoints in treating patients 
with multiple chronic conditions, as recommended by the 
WHO [55].

Strengths and limitations

Several strengths of the study should be considered in the 
interpretation of the findings. We first provided an inter-
pretable prediction tool for characterizing the phenotype of 
individuals with CAD through a multidimensional approach 
which captured the intersectionality between biology, physi-
ological function, and sociocultural gender in shaping coro-
nary vascular health.

We compared for the first time the inflammatory burden 
of obstructive and non-obstructive CAD. Even though we 
used a limited cytokines panel that does not cover the full 
spectrum of cytokines and chemokines implicated in the 
pathogenesis of CAD, we have moved one step toward 
identifying a distinctive signature for the two types of 
CAD and we are using this initial information to per-
form in depth mechanistic studies. The use of the SHAP 
tools delivers the possibility of explaining the role of the 

Fig. 6  Conceptual framework of the study. Our ML-based model sup-
ports the idea that different inflammatory mechanisms underlie differ-
ent type of CAD. We found that obstructive CAD was associated with 
increased frailty index, older age and a cytokine signature character-
ized by IL-1β, IL-12p70 and IL-33, which is pro-atherogenic and pro-
motes plaque instability. Non-obstructive CAD was associated with a 
higher gender score (i.e., social characteristics traditionally ascribed 
to women) and with a cytokine signature characterized by IL-18, IL-8 
and IL-23, which supports plaque stability and neutrophil recruitment
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features within the black box ML-based model. The quan-
titative ranking obtained by the integrated use of ML and 
SHAP tools together with the expert-driven features selec-
tion, represents an effective way of producing interpretable 
explanations of the biological mechanism and the role of 
holistic factors in identifying obstructive/non-obstructive 
CAD. Moreover, the EVA study collected a broad wealth 
of gender-based variables that capture all the domains gen-
der encompasses; therefore, we could generate a compos-
ite measure of gender and include it as distinctive feature 
of vascular health. We believe that our multidimensional 
model, taking together the mechanistic biological evalu-
ation with the analysis of residual physiological function 
and gender vulnerability, provides a comprehensive and 
unique way to evaluate and interpret the presence of coro-
nary artery disease.

The present findings should be interpreted in the light of 
several limitations.

The major limitation of this study is the small size of our 
cohort since ML approaches perform best with large data-
sets. As recently reported in a meta-analysis on ML-based 
studies on the prediction of cardiovascular disease [56], this 
issue commonly occurs depending on study design (e.g., 
single versus multi-center study), tools applied for defining 
cardiovascular disease (clinical vs advanced diagnostics). 
Nevertheless, due to the granularity and the multidimen-
sional nature of the individual patient data in EVA, the study 
adds a different outlook in the prediction of CAD. Despite 
this limitation using ML techniques, we verified the low 
performance of traditional statistical approaches as com-
pared with the ML-based selected. Thus, we could iden-
tify features that associate with either obstructive or non-
obstructive CAD, which had not been identified by standard 
statistical techniques (Fig. 2). To assess the effectiveness of 
this approach, data from an independent cohort with larger 
sample size should be collected to make external validation 
of our model.

We defined non-obstructive CAD anatomically as < 50% 
diameter stenosis without performing functional tests, there-
fore, we included in non-obstructive CAD ischemic condi-
tions that might have a different pathogenesis of ischemia 
especially in women [57, 58]; moreover, the anatomical 
stenosis based on minimal luminal area correlates poorly 
with the presence (or absence) of functionally obstructive 
disease [59].

The type of registry (i.e., patients who underwent CCA) 
might determine a selection bias effect on the composition 
of the EVA cohort as it is known that there are sex-based 
disparities in the accessibility to CCA [6]. Moreover, we 
might have missed some confounders due to the observa-
tional design of EVA. The generalizability might be limited 
as it is a single centre-based study.

Finally, despite identifying association does not imply a 
cause–effect mechanism, it generates a new hypothesis to be 
tested in further mechanistic studies.

Conclusions

Integrating clinical, biological, and psycho-social features, 
we have optimized a sex—and gender-unbiased model that 
discriminates obstructive and non-obstructive CAD. Further 
mechanistic studies will shed light on the biological plausi-
bility of the observed associations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00392- 023- 02193-5.
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