Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73-/-) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73-/- cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.

Metabolic pathways regulated by TAp73 in response to oxidative stress / M. Agostini, M. Annicchiarico-Petruzzelli, G. Melino, A. Rufini. - In: ONCOTARGET. - ISSN 1949-2553. - 7:21(2016 May 24), pp. 29881-29900. [10.18632/oncotarget.8935]

Metabolic pathways regulated by TAp73 in response to oxidative stress

A. Rufini
Ultimo
2016

Abstract

Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73-/-) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73-/- cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
ROS; metabolism; oxidative stress; p53 family; p73;
Settore BIO/10 - Biochimica
24-mag-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Metabolic pathways regulated by TAp73 in response to oxidative stress.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/967935
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact