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AbstrAct
Reactive oxygen species are involved in both physiological and pathological 

processes including neurodegeneration and cancer. Therefore, cells have developed 
scavenging mechanisms to maintain redox homeostasis under control. Tumor 
suppressor genes play a critical role in the regulation of antioxidant genes. Here, we 
investigated whether the tumor suppressor gene TAp73 is involved in the regulation 
of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment 
resulted in numerous biochemical changes in both control and TAp73 knockout 
(TAp73-/-) mouse embryonic fibroblasts, however the extent of these changes was 
more pronounced in TAp73-/- cells when compared to control cells. In particular, 
loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. 
In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) 
activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the 
absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and 
at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic 
profile observed reinforces the role of TAp73 as tumor suppressor and indicates that 
TAp73 exerts this function, at least partially, by regulation of cellular metabolism. 

IntroductIon

The maintenance of redox homeostasis is a crucial 
task for the cell, as different levels of reactive oxygen 
species can induce different biological responses, 
often associated with pathologies such as cancer and 
neurodegeneration [1-10]. High levels of ROS are 
detrimental, whereas at low levels, ROS sustains 
differentiation and proliferation, therefore acting as 
signaling molecules [11-21]. Indeed, cells can produce 
hydrogen peroxide (H2O2) in order to modulate biological 
processes as diverse as proliferation, differentiation 
and migration [22-26]. On the other hand, excessive 
production of ROS leads to the deleterious oxidative 
damage [27-31]. Hence, cells have developed numerous 

ROS scavenging mechanisms [32-36], most notably 
GSH [37, 38], catalase and superoxide dismutase and, 
of note, most of them are regulated by different tumor 
suppressor genes to safeguard cellular redox homeostasis 
counteracting excessive ROS production [39-41]. Among 
the tumor suppressor genes, the p53-family (p53, p63 
and p73 proteins) [42-50] has a key role in controlling 
antioxidant gene expression [51-54]. Indeed, p53 regulates 
the expression of numerous antioxidant genes, including, 
sestrins, TIGAR and glutaminase-2 (GLS2) [55-58], thus 
contributing to ROS homeostasis. 

Recent studies have also demonstrated an 
essential role for p73 and p63 in regulation of oxidative 
metabolism. In fact, deletion of the long TAp73 isoform 
of p73 increases ROS production and oxidative stress by 
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affecting electron flux during mitochondrial oxidative 
phosphorylation and flux through the oxidative arm of the 
PPP [59-61]. Similarly, p63 contributes to the maintenance 
of a balanced redox state in keratinocytes and lung 
cancer cells through the regulation of GLS2, cytoglobin, 
hexokinase-II and REDD1 [62-65].

The aim of this study was to identify the differences 
in global biochemical responses to oxidative stress 
between wild-type and TAp73 knock-out (TAp73-/-
) mouse embryonic fibroblasts (MEFs), with the held 
hypothesis that TAp73 controls oxidative metabolism and 
response to oxidative stress. H2O2 treatment resulted in 
numerous biochemical changes in both WT and TAp73-
/- cells, but the number and extent of these changes was 
more robust in TAp73-/- cells as compared to WT control. 
Overall, it appears that in the absence of TAp73, H2O2 
treatment results in an enhanced oxidative environment, 
possibly promoted by an increased nucleotide catabolism, 
concomitant to a decreased apoptotic biochemical profile 
as compared to TAp73-proficient cells. 

results

H2o2 induced-oxidative stress and glutathione 
recycling is potentially greater in tAp73-/- versus 
Wt MeFs

In order to explore the metabolic role of TAp73 
in oxidative stress, MEF derived from TAp73-/- and 
control mice were treated with H2O2 and then subjected 
GC-MS and LC-MS-MS platforms for metabolomics 
studies as previously described [66]. The total numbers of 
significantly or nearly-significantly altered biochemicals 
are reported in Table S1.

The tripeptide glutathione (gamma-glutamyl-
cysteinylglycine) functions as one of the major antioxidants 
in cells [67]. Both reduced and oxidized glutathione 
(GSH and GSSG) levels were increased following the 
H2O2 treatment time course in the WT and TAp73-/- 
cells, but these increases were greater in TAp73-/- cells 

Figure 1: Glutathione recycling is potentially greater in tAp73-/- versus Wt MeF. GSH is a key antioxidant molecule within 
the cell. The availability of the amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase, are 
the key factors in GSH synthesis. a.-i. Levels of the indicated metabolites were evaluated as described in material and methods. Anova 
contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each time point). 
P-values for reduced and oxidized glutathione are also reported for each time point.
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(Figure 1a and 1b). In addition, biochemicals associated 
with increased glutathione recycling (cysteinylglycine, 
gamma-glutamyl-amino acids, and 5-oxoproline) were 
also more elevated in the TAp73-/- cells, suggesting an 
increased rate of glutathione turnover occurring in the 
TAp73-/- cells over the course of H2O2 treatments (Figure 
1c-1e). Cysteine, which is the rate-limiting precursor to 
glutathione [68], showed increased levels in both WT and 
TAp73-/- cells during the H2O2 treatment and this increase 
was more pronounced and reached statistical significance 
in TAp73-/- cells. However, the absolute levels of cysteine 
remained consistently lower in the TAp73-/- cells, 
suggesting reduced cysteine precursor for glutathione 
biosynthesis (Figure 1f). The increased glutathione levels 
in both WT and TAp73-/- MEFs during the time course 
suggest that cysteine biosynthesis is enhanced by H2O2 in 
order to fuel the supply of glutathione. It should be noted 
that, in untreated cells (UNTR) the levels of cysteine 
were significantly lower in TAp73-/- as compared to WT, 
and remained such throughout the H2O2 time course. In 

keeping with the reduced cysteine levels in TAp73-/- cells, 
we identified increased levels of the tripeptides opthalmate 
(gamma-glutamyl-alpha-aminobutyrylglycine) (Figure 
1g) and norophthalmate (gamma-glutamyl-alanylglycine) 
(Figure 1h) in knockout cells as compared to WT controls 
following H2O2 treatment. 2-aminobutyrate and alanine 
replace cysteine during the synthesis of ophthalmate 
and norophthalmate respectively (Figure 1i). Thus, 
the increase in ophthalmate and norophthalmate could 
suggest either adaptation to limiting cysteine levels or 
to augmented glutathione synthetase (GCS) activity, 
triggered by oxidative environment. Increased levels of 
the oxidative by-product of sterols, such as oxysterols, 
7-ketocholesterol and 7-beta-hydroxycholesterol further 
support an increased oxidative environment in the TAp73-
/- cells as compared to WT cells (Table S1). 

Figure 2: loss of tAp73 enhances methionine metabolism following H2o2 treatment. Methionine is the initiating amino 
acid in the synthesis of eukaryotic proteins. Methionine metabolism begins with its activation to SAM by methionine adenosyltransferase. 
a.-n. Levels of the indicated metabolites were evaluated as described in material and methods. Anova contrasts t-tests were used to identify 
biochemicals that differed significantly between experimental groups (n = 5 for each time point).
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Methionine metabolism is enhanced following 
H2o2 treatment predominately in tAp73-/- cells

cysteine biosynthesis

As previously stated, cysteine levels were elevated 
in both WT and TAp73-/- cells over the H2O2 treatment 
time course, but these increases were more robust in 
TAp73-/- cells. The major source for cysteine biosynthesis 
is through methionine metabolism [69]. H2O2 treatment 
induced significant increases in the methionine metabolite, 
S-adenosylmethionine (SAM), in both the WT and TAp73-
/- cells, with TAp73-/- cells having more robust changes 
(Figure 2a). In addition, S-adenosylhomosysteine (SAH), 
which is formed when SAM participates in methylation 
events, demonstrated a trend of increasing levels in 
TAp73-/- over the H2O2 time course, but this increase did 
not reach significance, while SAH was unchanged over 
time in WT (Figure 2b). One possible explanation for 
why SAH showed non-significant increases in TAp73-

/- and was unchanged in WT could be due to increased 
metabolism to homocysteine and subsequently to 
cystathionine to fuel cysteine biosynthesis. The previously 
described increase in cysteine supports this possibility. 
Not only can cysteine be metabolized to glutathione, but 
it can also be oxidized to cysteine sulfinic acid, which can 
be further metabolized to hypotaurine and taurine. This 
metabolic route further depletes the cells of cysteine for 
glutathione synthesis. While cysteine sulfinic acid was 
increased in WT cells depending upon the H2O2 time point 
investigated, this increase never reached significance, and 
neither hypotaurine nor taurine were significantly changed 
in WT (Figure 2c-2e). In contrast, cysteine sulfinic acid 
was significantly elevated in the TAp73-/- cells following 
H2O2 treatment as compared to UNTR cells (Figure 2c), 
and although hypotaurine was unchanged, taurine was also 
significantly elevated in the TAp73-/- cells over the H2O2 
time course (Figure 2d and 2e). The lack of change in 
hypotaurine in TAp73-/- cells may reasonably result from 
subsequent metabolism to taurine. Thus, the already lower 
pool of cysteine in TAp73-/- cells (Figure 2f) appears to 
be further decreased by conversion to cysteine sulfinic 

Figure 3: Purine associated metabolites. a.-p. Levels of the indicated metabolites were evaluated as described in material and 
methods. Anova contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each 
time point).
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acid at a higher rate than that seen in WT and may have 
adverse effects on the synthesis of glutathione and thus 
compromise redox homeostasis in the TAp73-/- cells. 
Methionine salvage and transmethylation

Although there appeared to be an increase in 
methionine metabolism in both the WT and TAp73-/- 
cells, methionine levels were only significantly lower at 
the 12 hour H2O2 time point in the WT cells and were 
unchanged throughout the H2O2 treatments in the TAp73-/- 
cells (Figure 2g), which may suggest increased methionine 
salvage at the earlier time points in WT and TAp73-/- 
cells. Increased methionine salvage was supported by the 
significant increase in 5-methylthioadenosine (MTA) in 
both WT and TAp73-/- cells following 3 and 6 hours H2O2 
treatment, and this treatment-induced increase was greater 
in the TAp73-/- cells as compared to WT cells (Figure 2h). 
In addition to increased methionine salvage, it is possible 
that increased transmethylation following H2O2 treatment 
also contributed to the lack of change in methionine 
levels in the TAp73-/- cells. Elevated transmethylation 
in H2O2-treated TAp73-/- cells was supported by changes 
in choline, betaine, and sarcosine, glycine, serine and 

threonine in the TAp73-/- cells (Figure 2i-2n). Briefly, 
choline can be oxidized to betaine, and betaine can 
be further metabolized to N,N-dimethylglycine by 
functioning as a methyl source for the transmethylation 
of homocysteine back to methionine. Although N,N-
dimethylglycine was below the level of detection in 
TAp73-/- cells, its metabolite sarcosine was increased in 
the TAp73-/- cells throughout the H2O2 treatment time 
course, further supporting increased transmethylation. 
Sarcosine is rapidly degraded to the amino acids glycine, 
and glycine can be further metabolized to either threonine 
or serine. Thus, the increases observed in these amino 
acids support increased transmethylation activity. It is 
possible that the increase in sarcosine in the TAp73-/- 
cells is a consequence of increased glycine, which can be 
methylated to sarcosine, and thus would suggest increased 
amino acid uptake in the TAp73-/- cells is responsible for 
the increased sarcosine. Although increased amino acid 
uptake is possible, due to the additional changes observed 
for methionine metabolism, increased transmethylation 
remains a likely explanation for the observed changes in 
methionine-associated biochemicals.

Figure 4: Pyrimidine associated metabolites. a.-i. Levels of the indicated metabolites were evaluated as described in material and 
methods. Anova contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each 
time point).
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Effects on nucleotide metabolism by H2o2 
treatment of tAp73-/- are more profound 
compared to Wt

Purine associated metabolites

Interestingly, only the TAp73-/- cells demonstrated 
significant or trending increases in the purine nucleosides 
(adenosine, inosine, and guanosine, and xanthosine) 
(Figure 3a-3d) and nucleobases (adenine, hypoxanthine, 
and guanine) following 3 hours H2O2 treatment (Figure 3e-
3g). Both hypoxanthine and guanine can be metabolized to 
xanthine (Figure 3h), which is subsequently metabolized 
to urate (Figure 3i) and allantoin (Figure 3j). Xanthine 
increase initiated at 3 hours of treatment and reached 
significance at 6 hours in the TAp73-/- cells. We also 
identified a large, but not significant, increase in urate 
in TAp73-/- cells following H2O2 treatment, and this 
probably fuelled the significant increase in allantoin at the 
12 hours H2O2 treatment time point. The increases in urate 

and allantoin would suggest that purine catabolism further 
increased H2O2 levels in the TAp73-/- cells potentiating 
the effects of H2O2 treatment in these cells. In contrast, 
in WT cells, only xanthine showed an increase, which 
only trended towards significance. Probably xanthine 
increase was fuelled by direct conversion of its precursor 
2’-deoxyinosine (Figure 3k), which was significantly 
increased at 3 hours in both WT and TAp73-/- cells. Once 
again this increase was not only larger in the TAp73-/- 
cells, but 2’deoxyinosine was also significantly elevated 
in TAp73-/- cells throughout the entire H2O2 time course. 
These changes suggest increased purine catabolism 
following H2O2 treatment is more severe in TAp73-/- cells.

In addition to increases in purine catabolites, 
there was also an increase in the nucleotides, inosine 
5’monophosphate (IMP), adenosine 5’-monophosphate, 
and guanosine 5’-monophosphate (5’-GMP) in the TAp73-
/- cells (Figure 3l-3n), although only the increment in IMP 
reached significance at the 12 hours H2O2 time point. AMP 
was unchanged at 3 hours, but a non-significant increase 
at the 6 and 12 hours H2O2 treatment time points was 

Figure 5: sphingosine and ceramide metabolism. Ceramide is a sphingolipid which functions as bioactive signaling molecule.  
Ceramide plays key roles in a variety of cellular responses, including regulation of cell growth, viability, differentiation, and senescence. 
a.-b. Levels of the indicated metabolites were evaluated as described in material and methods. Anova contrasts t-tests were used to identify 
biochemicals that differed significantly between experimental groups (n = 5 for each time point).
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observed in TAp73-/- cells. In contrast, 5’-GMP levels 
were increased throughout the H2O2 treatments in TAp73-
/- cells, but these changes never reached significance. 
The changes in IMP and AMP were greatest at 12 hours 
H2O2, while the majority of the previously discussed 
purine catabolites were increased the greatest at 3 hours. 
Thus, the changes in IMP and AMP may represent either 
increased purine salvage or biosynthesis to compensate 
for the increased purine catabolism in the TAp73-/- cells 
following H2O2 treatment. The trending increases in 
pyrophosphate (PPi) (Figure 3o), which is formed from 
phosphoribosyl pyrophosphate (PRPP) during salvage 
and biosynthesis, and the purine biosynthesis intermediate 
adenylosuccinate potentially support a late increase in both 
purine salvage and biosynthesis in TAp73-/- cells (Figure 
3p). Nonetheless, we cannot formally rule out that RNA 
breakdown could contribute to changes in the nucleotide 
pool.

 In contrast to what was observed in TAp73-/- cells, 
IMP levels were significantly elevated only at the later 
H2O2 time points in WT cells, but PPi, adenylosuccinate, 

and AMP levels trended downwards in the WT cells. Thus, 
there does not appear to be increased purine salvage or 
biosynthesis in the WT cells, and the increase in IMP may 
rather represent enhanced purine catabolism at a later 
H2O2 time point in WT cells compared to TAp73-/- cells. 

Pyrimidine associated metabolites

A number of pyrimidine catabolites, likely 
associated with increased DNA and RNA breakdown, 
were increased following H2O2 treatment in both WT 
and TAp73-/- cells and these changes were in general 
greatest at the 3 hour time point and in the TAp73-/- cells. 
These changes included early increases in the pyrimidine 
nucleotides (cytidine 5’-monophosphate, uridine 
monophosphate, and thymidine 5’monophosphate) (Figure 
4a-4c), and nucleosides (cytidine, 2’-deoxycytidine, 
uridine, 2’-deoxyuridine, and thymidine) and the 
pyrimidine base (uracil) (Figure 4d-4i). Although PPi is 
also generated by pyrimidine salvage and/or biosynthesis, 

Figure 6: Glycolysis is increased early only in tAp73-/-following H2o2 treatment. Glycolysis is the metabolic pathway that 
converts glucose into pyruvate. a.-h. Levels of the indicated metabolites were evaluated as described in material and methods. Anova 
contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each time point).
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the observed changes in pyrimidine-associated metabolites 
do not indicate this is occurring. Rather, the observed 
changes suggest increased pyrimidine catabolism 
following H2O2 treatment, and this is more severe in the 
TAp73-/- cells.

Difference in sphingosine levels may reflect 
decreased ceramide in tAp73-/- cells

Increases in ceramide have been associated with 
growth arrest, differentiation, senescence, and H2O2-
induced apoptosis [70-72]. Although we failed to detected 
ceramide directly, its metabolite sphingosine had a 
trending increase at the 3 hours H2O2 treatment time point 
and was significantly increased at 6 hours in both WT and 
TAp73-/- cells (Figure 5a). At the 12 hours, the increase 
in sphingosine was maintained only in the WT cells, 
while the levels went back to control levels in TAp73-
/- cells. Furthermore, overall levels of sphingosine were 
consistently lower in TAp73-/- cells compared to WT 
cells at any time point investigated. The differences in 
sphingosine levels suggest increased ceramide in WT cells 
compared to TAp73-/- cells following H2O2 treatment. 
The reason for this increase in sphingosine remains 
unclear. Indeed, although H2O2 is known to increase 
sphingomyelinase activity and de novo ceramide synthesis, 
we did not observe changes in palmitoyl sphingomyelin, 
hence excluding increased sphingomyelinase activity. 

Therefore, we believe that de novo synthesis is the most 
reasonable explanation for the higher sphingosine levels 
(Figure 5b). 

Glycolysis is increased early only in tAp73-/- cells 
following H2o2 treatment

One of the biggest differences between WT and 
TAp73-/- cells following H2O2 treatment was observed 
in glucose metabolism. Upon cell entry, glucose is 
immediately phosphorylated to glucose-6-phosphate 
which then can either be shunted to the PPP for NADPH 
production and nucleotide biosynthesis or continue 
through glycolysis generating pyruvate and subsequently 
acetyl-CoA to supply to the tricarboxylic acid (TCA) 
cycle for oxidative energy metabolism. We identified 
concerted, albeit non-significant, increases in glycolytic 
intermediates glucose-6-phosphate, fructose-6-phosphate, 
fructose 1,6-diphosphate (observed as an isobar with 
glucose 1,6-diphosphate), dihydroxyacetone phosphate 
and 3-phosphoglycerate (Figure 6a-6f) in WT H2O2-treated 
cells compared to WT UNTR cells at the 12 hour time 
point. In contrast, glucose and the glycolytic intermediates 
were increased earlier in the TAp73-/- cells at 3 and 6 
hours, but returned to or fell below UNTR levels at 12 
hour H2O2 treatment. Notwithstanding these changes, 
pyruvate levels in both WT and TAp73-/- (Figure 6g) 
cells were lower at the 3 hour treatment compared to their 

Figure 7: enhanced PPP in tAp73-/- MeF after H2o2 treatment. The PPP is a metabolic pathway that generates NADPH and 
ribose for nucleotide biosynthesis. a.-d. Levels of the indicated metabolites were evaluated as described in material and methods. Anova 
contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each time point).
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respective UNTR cells and subsequently began to trend 
upwards back to UNTR levels following 6 and 12 hour 
H2O2 treatments in both WT and TAp73-/-. In summary, 
H2O2 treatment results in an early response in TAp73-
/- cells with enhanced glycolysis, while this activity is 
unchanged until 12 hours following H2O2 treatment in 
WT cells. 

Increased glycolysis induced by H2o2 in tAp73-/- 
cells sustains enhanced PPP

As previously discussed, one potential consequence 
of an early increase in glycolysis in the TAp73-/- cells 
following H2O2 treatment could be an increase in the 
PPP for NADPH production and nucleotide biosynthesis. 
Through sequential enzymatic steps, glucose 6-phosphate 
can be metabolized to ribulose 5-phosphate (observed 
as an isobar with xylulose 5-phosphate). Ribulose 
5-phosphate is subsequently processed to ribose 
5-phosphate, which can be metabolized to the end 

product ribose or to PRPP for nucleotide synthesis. All 
these metabolites were increased in TAp73-/- MEFs at 
3 hour and 6 hour treatment (Figure 7a-7c). The PPP-
associated biochemical sedoheptulose 7-phosphate was 
also increased in early H2O2-treated TAp73-/- cells, 
although these changes did not reach significance (Figure 
7d). The changes clearly indicate that increased glycolysis 
in TAp73-/- cells following H2O2 treatment results in 
increased PPP activity that does not occur in WT cells.

urea cycle associated biochemicals are altered in 
cells treated with H2o2

 We identified changes in urea cycle-associated 
biochemicals compatible with anaplerotic production 
of TCA cycle intermediates fumarate. The urea cycle 
functions to convert toxic ammonia to urea during amino 
acid catabolism [73]. The amino acid aspartate enters 
the urea cycle by condensing with citrulline to produce 
argininosuccinate. Argininosuccinate is then cleaved to 

Figure 8: urea cycle. In the urea cycle, ornithine combines with ammonia to form citrulline. Then, a second amino group is transferred 
to citrulline from aspartate to form arginine the immediate precursor of urea. Arginine is hydrolyzed to urea and ornithine; thus ornithine is 
regenerated in each turn of the cycle. a.-l. Levels of the indicated metabolites were evaluated as described in material and methods. Anova 
contrasts t-tests were used to identify biochemicals that differed significantly between experimental groups (n = 5 for each time point).
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form fumarate and arginine. In general, both significant 
and trending increases in aspartate, argininosuccinate and 
arginine (Figure 8a and 8b) were observed in WT and 
TAp73-/- cells upon H2O2 treatment, which correlated 
with significant increased levels of fumarate and malate 
(all H2O2 treatment time points in TAp73-/- cells and 
only 12 hour H2O2 time point in WT cells). Arginine 
can be further metabolized to creatine, which can be 
phosphorylated to creatine-phosphate, an energy storage 
compound. Interestingly, TAp73-/- cells showed trending 
increase in creatine levels over the H2O2 treatment time 
points that reached significance at 12 hours, an effect not 
observed in WT cells (Figure 8c). Changes in the levels of 
the spontaneous creatine-phosphate breakdown product, 
creatinine, also were observed during various time points 
of the H2O2 treatment time course (Figure 8d). The exact 
consequence of these changes is not clear, but an intriguing 
possibility is that creatine phosphate metabolism in both 
WT and TAp73-/- cells following H2O2 treatment acts as a 
potential survival mechanism. 

Since ornithine is also produced during the 
metabolism of arginine to creatine, this may account 
for the increase in ornithine at the earlier time points 
in TAp73-/- cells, even though urea was unchanged. 
Ornithine can be further metabolized to proline (Figure 
8g), whose metabolites contribute to synthesis of 
collagen or to the polyamines (putrescine, spermidine and 
spermine) (Figure 8h-8j). While no changes were observed 
in metabolites associated with extracellular matrix 
remodeling and collagen breakdown (proline, trans-4-
hydroxyproline or pro-hydroxy-proline) in WT cells, all 
three of these biochemicals were significantly increased 
following H2O2 treatment in TAp73-/- cells depending 
upon the time point investigated (Figure 8k and 8l). In 
addition, the proliferation-associated polyamines were 
increased in the TAp73-/- cells over the H2O2 treatment 
time course and these increases reached significance at 12 
hours. Overall, these changes in urea cycle metabolites in 
WT and TAp73-/- cells suggest that oxidative stress caused 
an early increase in biochemicals associated with the urea 
cycle in TAp73-/- cells that were not observed in WT cells. 
Such changes in TAp73-/- cells supports enhanced energy 
metabolism and anabolic activity in these cells.

dIscussIon

p73, together with p63 and p53, belongs to the 
well-established p53 gene family of transcription factors. 
Of these, p53 was discovered almost 40 years ago and 
still remains one of the most intensively studied tumor 
suppressor genes; as a consequence it shows very diverse, 
complex and articulated physiological functions, spanning 
from regulation of apoptosis, autophagy, mitochondria 
activity and oxygen radical homeostasis metabolism, 
DNA damage and repair pathways, maintenance of stem 
cell repertoire, as well as cell lineage determination [74-

93]. Despite all these years of exciting investigations, 
many controversial issues remain to be fully clarified to 
elucidate the physiological and pathological roles of the 
p53. This wide complexity raises from different aspects 
and facts, including regulation by proteasomal degradation 
[54, 94-98] and micro-RNA [99-107] or the existence 
of numerous splicing variants [108-116]. Accordingly, 
significant efforts are under way to harness its potential 
practical application for human diseases, especially with 
regard to cancer [117-126]. On the other hand, p63 and 
p73 were discovered only circa 15 years ago [127-130], 
but already show a complexity comparable to p53, as 
well as a fascinating intricate interaction with p53 itself 
[49, 131-135]. Importantly, a certain degree of specificity 
characterizes p63 and p73. Indeed, p63 is pivotal for 
epidermal formation and homeostasis [136-144], as well 
as playing a role in cancer and metastasis [133, 145-156], 
and fertility [157-159], whereas p73 has peculiar roles in 
neuronal development [160-164] and fertility [165-168]. 
Additionally, TAp73 is a known tumor suppressor gene 
that regulates cell cycle progression, survival, genomic 
stability, hypoxia and angiogenesis [42, 45, 166, 169-178]

Numerous accruing findings indicate that TAp73 can 
also regulate cell metabolism [59, 61, 179-183]. Indeed, 
we recently showed that ectopic expression of TAp73 
increases rate of glycolysis, and stimulated amino acid 
uptake, nucleotide biosynthesis and biosynthesis of acetyl-
CoA [182, 183]. In addition, TAp73 plays an important role 
in the maintenance of redox homeostasis either by directly 
regulating the expression of the mitochondrial complex IV 
subunit cytochrome C oxidase subunit 4 (COX4I1) or by 
enhancing the PPP flux and hence NADPH biosynthesis 
[59-61]. Prompted by these findings, we sought to 
broaden our investigation onto whether TAp73-mediated 
regulation of metabolism contributes to the orchestration 
of cellular responses to external oxidative stress. Toward 
this end, we exposed TAp73 knockout and control 
MEFs to H2O2-mediated oxidative damage and assessed 
metabolic changes over a 12h time course. Overall, this 
study shows that a number of biochemical pathways are 
significantly altered following H2O2 treatment. While 
H2O2 induces a plausible oxidative stress response in both 
WT and TAp73-/- cells, the degree of response appears 
to be greater in TAp73-/- cells, suggesting increased 
susceptibility to oxidative stress in TAp73-/- cells, as 
previously demonstrated [59]. Notwithstanding this 
evidence, TAp73-/- cells probably decrease biochemicals 
associated with apoptosis (as demonstrated by sphingosine 
metabolism). Moreover, TAp73-/- cells shows changes in 
glucose metabolism and amino acid metabolism at earlier 
time points than WT cells, which may not only allow 
the cells to handle the oxidative stress through increased 
NADPH production, but may also result in pro-anabolic 
activity in the TAp73-/- cells. The increase in ribulose 
5-phosphate/xylulose 5-phosphate in the TAp73-/- cells 
compare to WT cells, may suggest that an increased 
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pool of NADPH was available to reduce glutathione. In 
addition, the early increases in ribose 5-phosphate and 
ribose in TAp73-/- following H2O2 treatment may indicate 
both an increase in the metabolism of ribose 5-phosphate 
to ribose, but also an increased capacity for nucleotide 
biosynthesis. This finding deserves further investigation, 
but, in any case, the observed changes clearly indicate 
that increased glycolysis in TAp73-/- cells following H2O2 
treatment boosts PPP activity, an adaptation not occurring 
in WT cells. Intriguingly, despite the increased PPP flux 
should lead to enhanced NADPH synthesis and therefore 
higher GSH levels, we failed to detect any increase in 
the reduced glutathione pool in TAp73-/- MEFs. The 
reason for this is unclear and an accurate measurement 
of NADPH/NADP dynamics in these cells might help 
explaining this apparent conundrum. Moreover, it is also 
possible that the severe oxidative environment caused by 
exposure to H2O2 might have blunted any change in GSH 
or that the reduced pool of cysteine in TAp73-/- cells could 
have limited glutathione biosynthesis compared to their 
WT counterparts. Interestingly, with regard to cysteine, we 
observed a higher increment triggered by H2O2 treatment 
in TAp73-/- cells compare to WT (Figures 1 and 2). It is 
tempting to argue that such increase could be fueled by 
the glycolytic intermediate 3-phosphoglycerate (3-PG). 
Indeed, 3-PG is used to produce serine via the reaction 
catalyzed by 3-PG dehydrogenase, phosphoserine 
aminotransferase and phosphoserine phosphatase. In 
turn, serine can produce cysteine via homocysteine. 
Homocysteine can be the precursor of cysteine in a two-
step reaction, first the condensation between homocysteine 
and serine catalyzed by cystathionine-β-synthase, followed 
by cystathionine γ-lyase-mediated production of cysteine, 
ammonia, and α-ketobutyrate. This attempt to compensate 
for the reduce cysteine levels in response to oxidative 
damage might contribute to the dampened glycolytic flux 
observed in TAp73-/- cells.

We also observed changes in nucleotide metabolism 
compatible with increased DNA and RNA breakdown that 
is potentially a consequence of oxidative damage. Once 
again, this increase in nucleotide breakdown appears to be 
more severe in the TAp73-/- cells. 

In summary, our results suggest that metabolic 
changes in TAp73-/- cells following H2O2 treatment 
may result in a pro-growth metabolic profile of cells 
that have undergone severe oxidative damage, rather 
than in promotion of a cell death response under these 
conditions. Hence, loss of TAp73 leads, at least under 
oxidative stress conditions, to a rewiring of the cellular 
metabolism that partially resembles metabolic changes 
observed in cancer cells [2, 184-188], such as increase of 
PPP flux. The findings presented here reinforce the role 
of TAp73 as tumor suppressor gene and indicate that the 
regulation of cellular metabolism by TAp73 contributes 
to its tumor suppressor function. It is also fascinating to 
speculate that such metabolic regulations might play a role 

in the p53-family regulation of stem cells, as described by 
several research groups [47, 49, 141, 163, 164, 189-195]. 
Similarly, recent findings, linking epithelial-mesenchymal 
transition to nucleotide catabolism [196], open additional 
scenarios whereby regulation of nucleotide metabolism, 
so prominent for p73, might regulate additional cancer-
related phenotypes. These and other hypotheses await 
investigation and could be easily tested with the use of 
genetically modified animals or through the flourishing 
CRISPR/Cas9 technology [197-199].

MAterIAls And MetHods

Mice

Generation and genotype protocol of TAp73 
knock-out mice were described elsewhere [166]. Mice 
were bred and subjected to listed procedures under the 
Project License released from the UK Home Office. The 
experimental design met the standards required by the UK 
Coordinating Committee on Cancer Research guidelines 
[200].

cell culture

Mouse embryonic fibroblasts (MEFs) were prepared 
as previously described [59]. Briefly MEFs were isolated 
from E13.5  littermate embryos and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
10% fetal calf serum, 2mM L-glutamine. Cells were 
treated with 0.25mM H2O2 for the indicated time. 

All experiments were performed within the first 
3 passages from MEFs generation to avoid ensuing 
senescence in primary mouse fibroblasts.

Metabolic analysis

Sample preparation
Cells were harvested after the treatment and cell 

pellet stored at -80°C. Sample preparation was conducted 
using a proprietary series of organic and aqueous 
extractions to remove the protein fraction while allowing 
maximum recovery of small molecules. The resulting 
extract was divided into two fractions; one for analysis by 
LC and one for analysis by GC. The organic solvent was 
removed using a TurboVap® (Zymark). Each sample was 
then frozen and dried under vacuum. 
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liquid chromatography/mass spectrometry (lc/
Ms)

Samples were then prepared for the appropriate 
instrument, either LC/MS or GC/MS. The sample extract 
was split into two aliquots, dried and then reconstituted in 
acidic or basic LC-compatible solvents. One aliquot was 
analyzed using acidic positive ion optimized conditions 
and the other using basic negative ion optimized conditions 
in two independent injections using separate dedicated 
columns. Extracts reconstituted in acidic conditions were 
gradient eluted using water and methanol both containing 
0.1% Formic acid, while the basic extracts, which also 
used water/methanol, contained 6.5mM Ammonium 
Bicarbonate. The MS analysis alternated between MS 
and data-dependent MS2 scans using dynamic exclusion. 
The LC/MS portion of the platform was based on a 
Waters ACQUITY UPLC and a Thermo-Finnigan LTQ 
mass spectrometer, which consisted of an electrospray 
ionization (ESI) source and linear ion-trap mass analyzer. 

Gas chromatography/mass spectrometry (GC/MS)
 The samples for GC/MS analysis were re-dried 

under vacuum desiccation for a minimum of 24 hours 
prior to being derivatized under dried nitrogen using 
bistrimethyl-silyl-triflouroacetamide (BSTFA). The GC 
column was 5% phenyl and the temperature ramp is 
from 40° to 300° C in a 16 minute period. Samples were 
analyzed on a Thermo-Finnigan Trace DSQ fast-scanning 
single-quadrupole mass spectrometer using electron 
impact ionization. 

Compound identification

Compounds were identified by comparison to 
library entries of purified standards or recurrent unknown 
entities. Identification of known chemical entities was 
based on comparison to metabolomic library entries of 
purified standards. The combination of chromatographic 
properties and mass spectra gave an indication of a match 
to the specific compound or an isobaric entity. 

statistical analysis

For these studies we perform various ANOVA 
procedures (e.g., repeated measures ANOVA). All results 
with p < 0.05 was considered significant.

Abbreviations

TAp73, Transcriptionally active p73; DMEM, 
Dulbecco minimal essential medium; FBS, fetal bovine 
serum; GC, Gas chromatography; MS, Mass spectrometry; 
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