Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro antiinflammatory activity was evaluated by testing the inhibition of NF- B activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.
In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria / A. Van der Auwera, L. Peeters, K. Foubert, S. Piazza, W. Vanden Berghe, N. Hermans, L. Pieters. - In: PHARMACEUTICS. - ISSN 1999-4923. - 15:4(2023), pp. 1291.1-1291.22. [10.3390/pharmaceutics15041291]
In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria
S. Piazza;
2023
Abstract
Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro antiinflammatory activity was evaluated by testing the inhibition of NF- B activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.File | Dimensione | Formato | |
---|---|---|---|
pharmaceutics-15-01291.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.