In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that CP(3 )is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.

Rigidity results for Riemannian twistor spaces under vanishing curvature conditions / G. Catino, D. Dameno, P. Mastrolia. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 63:2(2023), pp. 13.1-13.44. [10.1007/s10455-023-09889-x]

Rigidity results for Riemannian twistor spaces under vanishing curvature conditions

D. Dameno
Penultimo
;
P. Mastrolia
Ultimo
2023

Abstract

In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that CP(3 )is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.
Twistor space; Four-manifold; Bochner tensor; Weyl tensor; Local conformal flatness; Moving frames;
Settore MAT/03 - Geometria
2023
23-feb-2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
s10455-023-09889-x.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 522.11 kB
Formato Adobe PDF
522.11 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/958028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact