In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that CP(3 )is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.
Rigidity results for Riemannian twistor spaces under vanishing curvature conditions / G. Catino, D. Dameno, P. Mastrolia. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 63:2(2023), pp. 13.1-13.44. [10.1007/s10455-023-09889-x]
Rigidity results for Riemannian twistor spaces under vanishing curvature conditions
D. DamenoPenultimo
;P. Mastrolia
Ultimo
2023
Abstract
In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces. In particular, using the moving frame method, we prove that CP(3 )is the only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci parallel and locally symmetric twistor spaces and we show the nonexistence of conformally flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning the self-duality of a Riemannian four-manifold.File | Dimensione | Formato | |
---|---|---|---|
s10455-023-09889-x.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
522.11 kB
Formato
Adobe PDF
|
522.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.