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Abstract

In this paper, we provide new rigidity results for four-dimensional Riemannian manifolds and
their twistor spaces. In particular, using the moving frame method, we prove that CP? is the
only twistor space whose Bochner tensor is parallel; moreover, we classify Hermitian Ricci-
parallel and locally symmetric twistor spaces and we show the nonexistence of conformally
flat twistor spaces. We also generalize a result due to Atiyah, Hitchin and Singer concerning
the self-duality of a Riemannian four-manifold.
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1 Introduction and main results

Let (M, g) be an oriented Riemannian manifold of dimension 2n, with metric g. The twistor
space Z associated to M is defined as the set of all the couples (p, J,) such that p € M and
Jp is a complex structure on 7}, M compatible with g, i.e., such that g, (J,(X), J,(Y)) =
gp(X,Y)forevery X, Y € T,M. 1

Alternatively, we can define Z in an equivalent way as

Z=0M) /U@,
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! In this work, we call complex structure an endomorphism Jy of a vector space V such that J. 2 = Idy,
while we call almost complex structure a (1, 1) tensor field J on a differentiable manifold M such that J
assigns smoothly, to every point p, a complex structure J,, on T, M.
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where O (M) denotes the orthonormal frame bundle over M and the unitary group U (n) is
identified with a subgroup of SO (2n) (see [13] for further details).

These structures, introduced by Penrose ( [25]) as an attempt to define an innovative
framework for Physics, have been the subject of many investigations by the mathematical
community, in virtue of the numerous geometrical and algebraic tools involved in the defini-
tion of their properties. In 1978, Atiyah, Hitchin and Singer ( [1]) adapted Penrose’s twistor
theory to the Riemannian context, introducing the concept of twistor space associated to a
Riemannian four-manifold and paving the way for many researches about this subject.

The orientation on M implies that O (M) has two connected components, O (M) and
O(M)_, and therefore we can define the two connected components of Z

Zi=0M)s JUm) = SOM) /UM,

where SO (M) is the orthonormal-oriented frame bundle over M. We choose the component
Z_ to be the twistor space of (M, g) (see also [5] and [27]). It is possible to define a
natural family of Riemannian metrics g; on Z_, where ¢t > 0 ( [13] [22]); from now on,
we systematically use the notation (Z, g;) to denote the twistor space Z_ endowed with the
Riemannian metric g;.

In general, if (M, g) is aRiemannian manifold of dimensionm > 3, the Riemann curvature
tensor Riem on M admits the well-known decomposition

1 S
Riem = W+——Ric Y ,
w2 B8~ S =28 08
where W, Ric and S denote the Weyl tensor, the Ricci tensor and the scalar curvature of
M, respectively, and @ is the Kulkarni-Nomizu product. Moreover, the Riemann curvature
tensor defines a symmetric linear operator from the bundle of two-forms A? to itself

R: A —> A?
1 S
Yy R(y) = ZRijkthtel N7,

where {67};=1.._n is a local orthonormal coframe on an open set U C M, with dual frame
{ei}i=1,....m> Yke = ¥ (e, e;) and R, ji, are the components of the Riemann tensor with respect
to the coframe {6'}.

If m = 4 and M is oriented, A2 splits, via the Hodge = operator, into the direct sum of
two subbundles Ay and A_.

This implies that the Riemann curvature operator

‘R assumes a block matrix form

7o (A BT ) 7
B C

where A (resp, C) is a symmetric endomorphism of A (resp., A_) and B is a symmetric
linear map from A4 to A_ (see [1], [2] and [30]). Moreover, trA = trC = %. This
corresponds to a decomposition of the Weyl tensor into a sum

W=WwW+w",

where W (resp., W) is called the self-dual (vesp., anti-self-dual) part of W.If W+ =0
(resp., W~ = 0), we say that M is an anti-self-dual (resp., self-dual) manifold. If we consider
the symmetric linear operators induced by W and W™, we have that their representative
matrices are A — % Iz and C — % I3, respectively, with respect to any positively oriented local
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orthonormal coframe; thus, (M, g) is self-dual (resp., anti-self-dual) if and only if C = %13
(resp., A = %13). Note that, if the coframe is negatively oriented, A and C need to be
exchanged in the previous statements.

In this paper, starting from our previous work [5], we focus our attention on some rigidity
results concerning twistor spaces satisfying vanishing conditions on relevant geometric ten-
sors, such as the Weyl tensor, the Bochner tensor and the covariant derivatives of the Ricci
tensor and the Riemann tensor. For instance, we are able to show the following results:

e nonexistence of locally conformally flat twistor spaces;

e a twistor space is Bochner-flat if and only if the underlying manifold is homotetically
isometric to S*;

e characterization of Ricci-parallel and locally symmetric twistor spaces;

e a generalization of Atiyah—Hitchin—Singer result, using the divergences of the Nijenhuis
tensor(s).

The paper is organized as follows: in Sect. 2, we show that, given a Riemannian four-manifold
(M, g), its twistor space (Z, g;) cannot be locally conformally flat for any 7 > 0.

Section 3 is devoted to the characterization of Bochner-flat twistor spaces: in particular,
we show that the only Bochner-parallel twistor space is “essentially” CIP?, which is the one
associated to the four-sphere $*.

In Sect.4 we consider Ricci parallel and locally symmetric twistor spaces, providing
rigidity results for twistor spaces whose Atiyah—Hitchin—Singer almost complex structure
JT = J is integrable (see Appendix C for details).

In Sect.5, we prove a general quadratic formula for |V J|?; moreover, we generalize the
necessary and sufficient condition for the integrability of J, first proven by Atiyah, Hitchin,
and Singer [1], through a vanishing condition on the divergences of the associated Nijenhuis
tensor. We also prove a new result concerning the Nijenhuis tensor of the Eells—Salamon
almost complex structure J— = J (see [15]).

To keep the paper self-contained as much as possible, we provide also five brief appendices
devoted to technicalities and some heavy computations (for instance, the list of the local
components of the Weyl tensor of a twistor space (Z, g;)).

2 Locally conformally flat twistor spaces

In this section, we want to show that the twistor space (Z, g;) associated to a Riemannian
four-manifold (M, g) is never locally conformally flat for any ¢+ > 0. By Weyl-Schouten
Theorem, we know that a Riemannian manifold of dimension n > 4 is locally conformally
flat if and only if its Weyl tensor W vanishes identically (for a proof, see [20] or [23]).

Before we state the main result of this section, let us recall the transformation laws for
the matrices A and B appearing in the decomposition of the Riemann curvature operator:
we know that, given a local orthonormal frame e € O(M)_, if we choose another frame
¢ € O(M)_, the change of frames is determined by a matrix a € SO (4) and that the matrices
A and B transform according to the equations

A=a;'Aa;, B=aZ'Ba; 2.1

where SO (3) x SO(3)>(a+,a—) = pu(a) and u is a surjective homomorphism from SO (4)
to SO(3) x SO(3) induced by the universal covers of SO(4) and SO(3) (see [2], [S] and
[27] for a detailed description).
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For the sake of simplicity, throughout the paper we adopt the following notation

Qub = Ri2ap + R3gap;
Oup = Ri3ap + Razap;
Oub = Rigap + Ro3ap- (2.2)

We also compute the differentials of the components listed in (2.2):

d@ab = Qub " + Qactf + Qep @ + Qap (@3 + @3) — Qup (W} + @3);

dQab = Qab (" + Qacfy + Qep g — Qap(@) + 3) + Qap (@j + @3);

d@ab = Qab @ + Quctfy + Qepy + Qup (@) + @) — Qap(@3 + @), (2.3)
where {a)l, e w4} is a local orthonormal coframe and a); are the associated Levi—-Civita

connection 1-forms.
Now, we can state the following result, which is new, to the best of our knowledge:

Theorem 2.1 Let (M, g) be a Riemannian four-manifold and (Z, g;) be its twistor space.
Then, (Z, g;) is not locally conformally flat for any t > 0.

Ploof Letus suppose that (Z, g;) is locally conformally flat, i.e., by Weyl-Schouten Theorem,
W = 0 on Z. By the vanishing of the coefficients W ,p56 in (B.4), we obtain the system

Q2 = (@1 Q2 — 02 Q1)
2
934 = T(@3c Qsc — Ouc O30)

expliciting the right-hand sides and then summing the equations, we derive the equality
2411 +12(A3; — AnAs3) = 0.

Note that W = 0 is a global condition: in particular, this means that the equation above must
hold for every p € M (it suffices to consider the pullback maps via any section of the twistor
bundle). Moreover, since the locally conformally flatness is a frame-independent condition,
the equation holds for every local negatively oriented orthonormal frame e € O(M)_. In
particular, since A is a symmetric matrix, we have that the equality holds for every frame e
such that A is diagonal; in this situation, we have that

241 — 1*AnAs =0,

for every frame with respect to which A is diagonal. By (2.1), we can exchange the diagonal
entries of A with suitable changes of frames in order to obtain the additional equations

0 =241 — *ApAs; =240 — 1*A11 A%
0 =241 —*ApAs; = 2433 — 12A11 A,
where X,- j and ;l\, ;j are the entries of the matrix A with respect to some frames ¢ and e,

respectively. At a point p € M, since t > 0, the system of these three equations admits three
distinct solutions:

() Ay =Axn = A33=0;

2
(2) A1 =Axn =A33 = 3

~

2 2
(3) two diagonal entries out of three are equal to — 7 while the third is equal to ok
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This means that, at p € M, the scalar curvature S of (M, g) can attain the values 0, 24/t2
or —8/ #2. Since the scalar curvature is a smooth function on M and, for every point of M,
one of the three equations must hold, we can conclude that S is constant on M: indeed, the
possible values for S are finitely many, therefore, if S(p) # S(p’) for p, p’ € M, S would
not be a smooth function.

First, let us prove that the first two cases lead to a contradiction. Note that, in this situation,
A is a scalar matrix for every point p € M (and, by (2.1), for every frame), which means
that (M, g) is a self-dual manifold. By the vanishing of the components Wsaps and Weape,
if a # b, we obtain

_ _ 1 12
0= Wsaps + Wears = ERab - E(Qac Opvc + Quc Die);

in particular, for (a, b) = (1,2) and (a, b) = (3,4), by the self-duality condition we can
compute

28
O13—0uu=Rip= ?(Qw — 014)
%S
@13+ 014 =Ry = ?(QIS + 014),

which imply immediately @14 = @23 = @13 = @42 = 0 on M. This is equivalent to say
that the entries B3 and B3j of the matrix B vanish identically on M since this is a global
condition, by suitable change of frames, equation (2.1) implies that the matrix B is the zero
matrix, i.e., (M, g) is an Einstein manifold (see also [5] for a detailed proof). However, we
have that

_ 28 8
0= Wseso = |Qup|* + 10u|* = 32 +74;

the left-hand side of the second equation is equal to (S%/18) for an Einstein, self-dual mani-
fold, hence, for S equal to O or to 24 /%, we get a contradiction.
Thus, we can choose a frame e with respect to which A is diagonal and
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2

Ayl = —Ap = A3z = —

If we consider again the equations Wsap5 = Weans = 0, we obtain

1 1 2
E(QB —0us) = §R12 = %(Qlc 02 + Q1c O2c) =2(013 + Q14)

1 1 2
5(@13 +01) = 5R34 = %(Q3c O4c + O3c Osac) =2(013 — Q14),

which obviously imply @14 = @13 = 0, i.e., B3 = B3 = 0 in the chosen frame e. In
fact, we can say more: the equalities B3y = B3 = 0 hold for every frame ¢’ with respect to
which the matrix A is in diagonal form with A11 = —Ay»n = A33 = —2/t2 Note that we
can choose suitable change of frames such that A = A, where A is the matrix associated to
the transformed frame ¢: indeed, it suffices to choose a. = I3 in (2.1).

Therefore, with suitable choices of a_ and putting a4 = I3 in (2.1), it is immediate to
show that

Bip = Bi13 = By = By3 = B3y = B33 =0

for a frame e with respect to which A is in diagonal form with A|; = —Ax = A3z = —2/t2.
Finally, let us compute
— 128 2 , 28 8 8
0=W5656=>7=|Qab| + Qs ﬁ—i_lj 34
which is obviously impossible. Thus, (Z, g;) cannot be locally conformally flat. O

By well-known results due to Glodek (see [17]), Derdziriski and Roter (see [14] and [26]),
it is immediate to show the following

Corollary 2.2 A twistor space (Z, g;) is conformally symmetric, i.e., VW = 0, if and only if
it is locally symmetric, i.e., VRiem = 0.

3 Bochner-flat twistor spaces

Let (N, g, J) be a almost Hermitian manifold of dimension 2n. We can define the Bochner
tensor B of N as the (0, 4)-tensor whose components with respect to a local orthonormal
frame are

qurx = qurs + [8175 Rqr - 817r Rqs + 8qr Rps - 8qs Rpr+

1

2(n+12)

+JP T Ry — IV T Ry — 27 T R+
I T Ry — T4 TRy — 20! Rp,] +

S
4(n+ D(n+2)
This tensor was first introduced by Bochner as a “complex analogue” of the Weyl tensor
[3]. It is important to note that some authors define the Bochner tensor as — B, because of a
different convention for the sign of the Riemann tensor (see, for instance, [31] and [32]).

We say that N is a Bochner-flat manifold if B vanishes identically, i.e., if Bpgy = 0
for every 1 < p,q,r,s < 2n. It is known that, in general, the Bochner tensor does not

[8ps8qr — 8prdgs + IS I — TP I =207 07]. 3.1)
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satisfy the same symmetries as the Riemann tensor (see, for instance, [35]). However, if N
is Bochner-flat, by (3.1) we obtain

1
2(n+2)
+JP T Ry — IV T Ry — 200 T R+

Rpgrs =— [‘Sps Rgr = 8pr Rgs +8qr Rps — 845 Rpr+-

ST Ry = ST Ry = 207 T4 Ry | +

b g e = Sy I =PI~ 20 ) G
which means that the right-hand side of (3.2) satisfies the same symmetries as the Riemann
tensor.

Now, let (M, g) be a four-dimensional Riemannian manifold and let (Z, g;, J) be its
twistor space, regarded as an almost Hermitian manifold. It is known that (Z, g;, J) is a
Kéhler—Einstein manifold if and only if (M, g) is an Einstein, self-dual manifold with scalar
curvature S = 12/ 12 (see, for instance, [5], [10], [24] and Corollary 4.2 of this paper). Let us
suppose that (Z, g;, J) is a Kdhler—Einstein manifold and let B be its Bochner tensor. Under
these hypotheses, we can compute the components B pgs:

B4rs =0, if at least one of the indices is equal to 5 or 6;
_ 1
Babcd = Rabcd - ﬁ(‘sacfsbd - fSad‘sbL') (33)

(note that, in this case, the Bochner tensor satisfies the same symmetries as the Riemann
tensor. See also Remark 3.5). By direct inspection of these components and by recalling that
$* is the only four-dimensional space form with positive sectional curvature, up to isometries,
one can show the following

Proposition 3.1 Let (M, g) be a Riemannian four-manifold such that its twistor space
(Z, g, J) is Kihler—Einstein. Then (Z, g, J) is Bochner flat if and only if (M, g) is isometric
to $*, with its canonical Riemannian metric.

It is natural to ask whether Proposition 3.1 can be generalized or not if there are no
hypothesis on the almost complex structure J: more precisely, our goal is to characterize
almost Hermitian, Bochner-flat twistor spaces. Rather surprisingly, it turns out that S* is the
only Riemannian four-manifold whose twistor space is Bochner-flat.

First, let us define the covariant derivative VB of the Bochner tensor B of an almost Her-
mitian manifold (N, g, J), whose components with respect to a local orthonormal coframe
are

1
2(n+2)
F Ry (SIS u + I I )+ IS T Ryt
~Rgt (J3 I+ 30T — P T Ryt
2R (J{ IS+ I T — 20 TR+
Ry (ST + T )+J"J Rprut
Ryt (SIS 4+ I ) = T R et

qurs,u = qurs,u + [8pqur,u - (Serqs,u + 8qups,u - (quRpr,u"_

s Yq.u

2Ry (L I = 20 Ty Ry +
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Su

4+ D +2)
S

4+ D)(n+2)

[8psdqr — 8prdgs + JL T — JF I =207 9! ]

[-Irq-]sl,)u + Jspjrq,u - J;]JrI,Ju - -]rp-];{u - ZJyr-lqp,u - 2Jqp-]yr,u]s

(3.4)

and

VRic = Ryy,:0"' @ 67 @ 04

VI=J0'®0®e¢,

ds = S,0".
We say that (N, g, J) is Bochner-parallel if VB = 0; in this case, by (3.4) the components
of V Riem satisfy the equation

1

2m+2)
+Ry (SIS + LI + I T Ryt
—Rgt (L2 + 10 J{ ) = I T Rarut
2R (IS w4+ T — 200 TRyt
FRp (ST + JTL ) + TRyt
—Rp (SIS + I IE ) — T TRyt

r,u

qurs,u = [apqur,u - Serqs,u + (Squpx,u - Sq.YRpr,u+

2Ry UL+ T T = 20 TR +

s Yq,u
Su
* m[%% —8prbgs + IS I = I I =207 07
S

AT+ 33— I = P I =20 0 =207 I ).

q Ys,u

(3.5)

P E Ty

Before we state and prove the main result of this section, we need the following

Theorem 3.2 Let (M, g) be a Riemannian four-manifold and (Z, g, J) be its twistor space.
Then, the Ricci tensor Ric of Z is complex linear, i.e.,

fth; +fq,J1’, =0on Z forevery p,q =1, ..., 6, 3.6)
if and only if (M, g) is an Einstein, self-dual manifold.

Proof If (M, g) is an Einstein, self-dual manifold, the validity of (3.6) can be immediately
shown by a direct inspection of the components listed in (B.2).
Thus, let us suppose that (3.6) holds on Z. First, note that

0=RyJ{+RuJ{ =2R;,J{ =R
0= ﬁy.]é +§3t1§ = 2?3;.]:;1 =Ry

on Z; by (B.2), we can write
t2
R12 = E(Qlc QZC + Qlc QZC)
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2
R3g = %(Qsc Osc + Q3¢ Bac).

Subtracting the first equation from the second, we obtain
B3, = t*(Bn B3, + By3B3);

note that this is a global condition on the entries of the matrix B, which means that it holds
for every choice of local orthonormal frame. By (2.1), we can choose

100
a_ =100 1 ) a+:I3!
0-10

where /I3 is the 3 x 3 identity matrix, to compute

- Bii Bz B3
B = | —B31 —B3x —Bs33
By1 By B

and to obtain
By = By = 1*(Bay By + B3 Bs33) = —1>(B32Bay + Ba3 B3) = —Ba.

Now, choosing

-1 00
a_ = 0 —1 0 s ay = 137
0 01
we get
N —Bi1 —Bi2 —Bi3
B =|—B2 —Bx» —Bx3
B3y B3 Bs3
and

B3y = By = 1*(BxaB32 + B3 By3) = —1*(B32Bay + B33B3) = —Bxo;

therefore, we conclude that By = B3, = 0.
Now, we can choose the change of frames determined by

100 100 100
a_ =1, ar=[00-1 and a_ =00 1), a =]00 -1
010 0-10 010

to compute
2
B33 = 1" B3 B33 = —Ba3,

which obviously implies that B>3 = B33z = 0. By an analogous computations, we can also
obtain By; = B3; = 0. Finally, choosing

001
a_=1010], ar =1
—-100
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and repeating the argument above, we conclude that B1; = Bj» = Bj3 = 0. Thus, for every
p € M there exists a local frame such that B = 0, i.e., (M, g) is an Einstein manifold.
Now, by (3.6), we obtain

0= Rs;J¢ + RerJi => Rss = Res = 1Qab|* = 1@apl%
since (M, g) is an Einstein manifold, this equation can be rewritten as
(A2)* + (An)* = (Ai3)* + (An)°,

which is another global condition and, therefore, does not depend on the choice of the local
frame. In particular, for every frame with respect to which A is diagonal, we have that
(A22)* = (A33)? and, since we can exchange the diagonal entries of A, we can conclude

(A1)? = (An)* = (A33)”.

If A;1 = Ay = Asaz, then this holds for every local orthonormal frame by (2.1), hence
(M, g) is self-dual and the claim is proven.

Thus, without loss of generality, we may suppose that, for instance, Ay» # A3z at a point
p € M for some local frame e € O (M)_ withrespect to which A is diagonal. By the equation
above, it is obvious that the diagonal entries satisfy

Al =An=—-Ap=x#0;

if we choose the change of frames determined by

0 -1 0
)
ay = \{i l‘ﬁ s
AR
we obtain
_ (003
A=1]1 0 x O
-30 0
and
R IR I IRV I ARy ,  x?
(A12)" + (A22)" = (A13)" + (A33)" = x =T

which is true if and only if x = 0 and leads to a contradiction. Therefore, diagonalizing A we
obtain a scalar matrix on M, which is equivalent to say that (M, g) is a self-dual manifold. O

We are now ready to state the following

Theorem 3.3 Let (M, g) be a Riemannian four-manifold and (Z, g;, J) be its twistor space.
Then, (Z, g, J) is Bochner-parallel ifand only if (M , g) is homotetically isometric to $* with
its canonical metric. In particular, the only Bochner-parallel twistor space is CP3 endowed
with the Fubini-Study metric.

An immediate consequence of Theorem 3.3 is the following

Corollary 3.4 (Z, g;, J) is Bochner-flat if and only if (M, g) is homotetically isometric to g4
with its canonical metric.
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Proof of Theorem 3.3 First, note that, in order to prove the claim, it is sufficient to show that, if
(Z, g, J) is Bochner-parallel, then it is a Kdhler-Einstein manifold, i.e., (M, g) is an Einstein,
self-dual manifold with scalar curvature S equal to 12/72: indeed, by (3.3), it is immediate to
show that, if (Z, g;, J) is a Kihler—Einstein manifold, then it is Bochner-parallel if and only
if it is Bochner-flat (it is sufficient to check the components E,,qrs, ¢); therefore, this ends the
proof by Proposition 3.1.

Let us consider the local expression of VB in (3.5): the right-hand side satisfies the
same symmetries as the components of V Riem. Thus, recalling that the Riemann tensor is
skew-symmetric with respect to the last two indices, we obtain

_ _ 1 _ _
0 = qurs,u + qurs,u = g[‘]sr,u(Rth(; + thJ[t))
+JS Rped g+ Ry + Iy R pru + I Rgr )]
forevery p,qg =1, ..., 6.
If we consider a pair of indices (r, s) such that J; = 0, the equation becomes
Jyu(RpiJy + Ry ) =0.

If J;u # 0 for some r, s, u and for every local frame e, we conclude that fpz J(j —|—§q, Jlﬁ =0
for every p, g. On the other hand, if ¢’ is a frame with respect to which Jg . = 0 for every
r, s, u, we obtain

Q13 =04 = Q14 = 023 =tl2
Q12=0u=01n=03u=01u=013=@013=0n=0,
which obviously imply that
Ri2 = R34 =0and Rss = Res

for the chosen frame. Thus, these equations hold on Z for every choice of e € O(M):
therefore, we can repeat the argument exploited in the proof of Theorem 3.2 to conclude that
(M, g) is an Einstein, self-dual manifold.

Now, by (3.5), (B.1) and the local expression of VRiem, itis easy to compute, for instance,

2 R _ PS (o 365 288
5164 = Riss6.4 = o0s 2 p

)

since by (B.7)
3
— °S 188 72
R = (- — + =
164 1728( 12 + 4 )

we have the equality

SS12S24_SS12S6
6912 12 12 ) 4320 12 12

and it follows immediately that this holds if and only if S € {0, 12/ 12).
If we suppose S = 0, by (B.1) and (3.5) it is easy to compute

Lo

— S
0= R1334,6 = *J31,6 = ngs

40

which is impossible, since
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o=t 2 —(@u+0m|=1#0
36 = 51 2 14 B)| =7 .
Thus, by Corollary 4.2 we conclude that (Z, g;, J) is a Kidhler-Einstein manifold and this
ends the proof.
O

Remark 3.5 (1) It is worth to note that Theorem 3.2 is a generalization of a result due to
Davidov, Grantcharov and Muskarov, who showed that the Riemann tensor Riem of
(Z, g, J) satisfies

Rpgrs = RuwwJpJ) IV IS Y1 < p,q,r.s <6 3.7)

ifand only if (M, g) is an Einstein, self-dual manifold (see [12]). Indeed, a straightforward
computation shows that (3.7) implies (3.6). Almost Hermitian manifolds which satisfy
(3.7) are sometimes called RK-manifolds see ( [33] and [35]) and (3.7) is a condition
satisfied by every nearly Kihler manifold (see [18]).

(2) We point out that one can directly prove Corollary 3.4 without exploiting Theorem 3.3;
indeed, if we suppose that (Z, g;, J) is a Bochner-flat manifold, by (3.2) we can show
that Riem is a K -curvature-like tensor, i.e., its components satisfy

RygisJ! + RpgriJ, =0,V1 < p,q,r,s <6. (3.8)

The equality in (3.8) is sometimes referred to as Kdhler identity and it is a deeply studied
feature of almost Hermitian manifolds, aside from the twistor spaces context (we may
refer the reader to [18], [28], [29], [34] and [35]).

By another result due to Davidov, Grantcharov and Muskarov [12], Riem satisfies (3.8)
if and only if (M, g) is an Einstein, self-dual manifold with S € {0, 12/ t2} If S =0, by
(3.1), (B.1), (B.2) and (B.3), we obtain

_ 3 0r2
0 = Bsese = ~— E'Q‘W:

20 T102 10¢2°

which is a contradiction. Thus, (Z, g;, J) is Kdhler—Einstein and, by Proposition 3.1, the
claim is proved. For detailed dissertations about Kihler, Bochner-flat manifolds, see, for
instance, [4], [6], [7] and [8].

4 Ricci parallel and locally symmetric twistor spaces

In this section, we discuss the case of a Riemannian four-manifold (M, g) whose twistor
space (Z, g, J) is a Kéhler—FEinstein manifold.
Let us start proving a well-known result due to Friedrich and Grunewald (see [16]):

Theorem 4.1 Let (M, g) a Riemannian four-manifold and (Z, g;) be its twistor space. Then
(Z, g) is Einstein if and only if (M, g) is Einstein, self-dual with scalar curvature S equal
10 6/t* or to 12/12.

6 12

Proof Let us suppose that M is Einstein, self-dual with S € {t—z, t—z}. We obtain immediately

that Rys = Rue = 0: indeed, since M is Einstein, then (M, g) has a harmonic curvature
metric, i.e., divRiem = 0, which means that, in particular, @4 . = @yc . = 0 for every
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a =1, ...,4. We have that M is Einstein and self-dual if and only if

Q13 =014 =023 =04»=0
O =014 =023 =03 =0,
On=013=040=E03=0;

S
O3 =00 =01u=03=01=0nu= i

Therefore, for instance we have that

4
— 1
Riy = —512 Y (@1 @2 + @1 @20) =0;

c=1

with similar computations, we obtain that R,;, = O for every a # b. Obviously, the system
also implies that R5¢ = 0. Now, let us consider

4
— s 1
Ri=7 - 5#21@10 Qi + Q1c Q1) =
c=
S 1, 5 o S, 8
1772 ((@13)" + (@14)) ) 44
we have that
§—S—|—2 tzsz
o 2 72
Thus, we have
— S 5. 72 6 12
Rll:g©t5_18S+[72:O<:>Se[[72’[72’

i.e., Rj] = S/6 by hypothesis. With analogous computations, we conclude that R,, = S/6
for every a. Finally,
s = Reg = + 425
P TN T ag

Again, the right-hand side is equal to E/ 6 if and only if S is equal to 6/ 12 or to 12/ £2, which
implies that Z is Einstein. - B

Conversely, let us suppose that (Z, g;) isﬁan Einstein manifold, i.e., R, = (5/6)8),.
Recalling the expressions of Riem, Ric and S listed in (B.1), (B.2) and (B.3), respectively,
we easily obtain

s 1 2 5 n_ S _ o L2
¢ T3~ 5510w +18wl?) = ¢ = Rss = 5 + 1 1Qu|;
S 1 [2 2 2 § - 1 [2 2
8—1—37—%0@1“ +1@asl )_8_ 66—17+Z|Qab|-
This implies immediately that

7l2 2 S 2 tz 2

§|Qab| —g_?_ﬂ|Qab|’

712 2 N 2 tz 2

§|Qab| —g_?_ﬂ|gab|-
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Subtracting the two equations, it is easy to show that
2
212 4

Now, by the expression of the components in (B.2), we have that

2 2
[Bun|” =1Quwp|” =

2 4 <
Rir = 53" (@ue One + B @) = 280 = (> + =5 )bun:
ab 2C=l ac c ac c 6(1 3 2l2 abs

a straightforward computation shows that
Rit + Ry — Rz — Rag = [(@12)* + (@12)* — (@34)> — (834)*].
that is,
Bii = t*(A12B12 + A13B13),

for every local orthonormal frame e € O(M)_. Thus, we can choose a frame e such that
the associated matrix A is diagonal, in order to obtain Bj; = O (note that this is not a global
condition). By (2.1), if we choose

010
ay =1, a_-=|-100],
001
we easily obtain that
_ By1 By Bas
B=| 0 —Bi» —Bi3|,
B31 B3 B3

which leads to
By = By = *(A1nBp + A13B13) = 0

(note that also A is a diagonal matrix). By analogous computations, we can conclude that
B =0,1i.e., (M, g) is an Einstein manifold.
Now, by hypothesis we have that

since (M, g) is Einstein, this equation assumes the form
AA13 + A23(Az + Az3) = 0.

Let us again choose e € O(M)_ such that A is diagonal. Choosing suitable matrices a4+ €
SO (3), it is easy to obtain that

Ajp=An VA =—Ap.

If we suppose that Aj; # Ajo, analogous computations immediately leads to a contradiction.
Thus, A1; = Az. Exchanging A and A3z, we can repeat the same argument to obtain
A1y = Aszz. Thus, (M, g) is self-dual.
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Finally, since (M, g) is Einstein and self-dual, we compute

52 , S 2
£=|Qab| =53 @
that is,

*S? — 182§+ 72 =0.

Again, this equation holds if and only if

6 12
S e

and this ends the proof. O
As a consequence, we can state another well-known result (see [24] and [5]):

Corollary 4.2 The twistor space (Z, g;, J) associated to (M, g) is a Kihler—Einstein man-
ifold if and only if (M, g) is an Einstein, self-dual manifold with scalar curvature equal to
12/12.

Proof 1If (M, g) is an Einstein, self-dual manifold with § = 12/[2, a direct inspection of
the components in (B.2) and (C.3) shows that (Z, g;) is Kidhler—Einstein. Conversely, by
Theorem 4.1 we know that (M, g) is Einstein, self-dual with S equal to 6/1% or 12/12. If we
suppose S = 6/1%, we immediately obtain that

He=—ul =L #0
3,6 4,5 2t ’
which contradicts the hypothesis that (Z, g;, J) is a Kidhler manifold and ends the proof. O

We recall that compact, Einstein, self-dual four-manifolds with positive scalar curvature
have been classified: indeed, Hitchin showed that there are just two possibilities, up to con-
formal equivalences, which are $* and CP? with their canonical metrics [21].

Now, we want to provide an analogue of Proposition 3.1, in order to give another char-
acterization of $*. Indeed, by direct inspection of the components listed in (B.6), one can
immediately show the validity of

Theorem 4.3 Let (Z, g1, J) be a Kdhler-Einstein twistor space. Then, (Z, g;, J) is locally
symmetric if and only if (M, g) is homotetically isometric to $* with its canonical metric.

Note that, combining Theorem 4.3 with Theorem 3.3 and Corollary 2.2, we can state the
following

Theorem 4.4 Let (Z, g;, J) be a Kdihler—Einstein twistor space. Then the following condi-
tions are equivalent:

(1) (Z, g1, J) is a conformally symmetric manifold;
(2) (Z, g1, J) is a Bochner-parallel manifold;
(3) (M, g) is homotetically isometric to S* with its canonical metric.

Recall that the equivalence (2) < (3) holds without any a priori hypothesis on (Z, g;, J),
by Theorem 3.3.

Moreover, the Einstein condition on g; implies that (Z, g;, J) is a harmonic curvature
manifold, i.e., divRiem = 0. Then, by this consideration, equation (3.4) and Theorem 4.4
we can state the following
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Theorem 4.5 Let (Z, g;, J) be a Kihler—Einstein twistor space. Then, gither (Z, g, ) is
Bochner-parallel (and, then, (M, g) is homotetically isometric to $*) or VB # 0 and divB =
0.

Though in Theorem 3.3 we characterized $* as the only four-dimensional manifold whose
twistor space is Bochner-parallel, we cannot obtain an analogous characterization if we drop
the hypothesis of g; being Kihler—Einstein in Theorem 4.3. For instance, by (B.1), an easy
computation of the local expression of VRiem proves the following

Proposition 4.6 Let (M, g) be a Ricci-flat, self-dual, locally symmetric four-manifold. Then,
its twistor space (Z, g;) is locally symmetric.

Even though $* is not the only four-manifold whose twistor space satisfies VRiem = 0, if
we consider Hermitian twistor spaces, i.e., the ones associated to self-dual manifolds (see
[1] and [5]), we can state the following

Theorem 4.7 Let (M, g) be a self-dual Riemannian manifold and let (Z, g;) be its twistor

space. Then,

(1) (Z, g:) is Ricci parallel (i.e., VRic = 0) if and only if (Z, g;) is an Einstein manifold or
(M, g) is Ricci-flat;

(2) (Z,g) is locally symmetric if and only if (M, g) is homotetically isometric to $* with
its canonical metric or (M, g) is Ricci-flat and locally symmetric.

Proof (1) First, let us suppose that (M, g) is an Einstein, self-dual manifold with scalar cur-
vature S. In particular, (M, g) is Ricci parallel. Moreover, since under these hypotheses

QueBue = Qe Qe = QueQde = Qv e = Bav e = Qapo =0

forevery a, b, c, we immediately obtain that the only components listed in (B.7) that may
not vanish are Ryp 5, Rap.6, Ras.b, Rae.p for some a, b. A straightforward computation

shows that ﬁam = Rup,6 = 0, regardless of the value of S.
Let us consider, for instance,

_ 1S 185 72 S 12 6
Risp=— (S>—— 4+ = o3p=——o S= = ) S — = |63.
15.b 1728< 2t z4> b 1728< r2>< z2> 3

Similar computations show that the other components of VRic vanish for the same values
of §. Thus, by Theorem 4.1, we conclude that, if (M, g) is an Einstein, self-dual manifold,
(Z, g) is Ricci parallel if and only if it is an Einstein manifold or the scalar curvature of
(M, g) vanishes.

Thus, in order to prove the statement, it is sufficient to show that any self-dual manifold
whose twistor space is Ricci parallel must also be an Einstein manifold. Under these
hypotheses, we can observe that

0= Rss.6 = Res.5s = 0= Qup Qur = Qi Qab;
by the self-duality condition, these equations become
B13B11 + B31B33 + B21 Bz =0
B1aB11 + B21B» + B31B3y =0

Since the system holds for every e € O (M)_, by a suitable change of frames we obtain
that

B12B13 + B2 B3 + B3y Bz = 0.
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The validity of these three equations is equivalent to the orthogonality of the columns of
the matrix B; this means that BT B = D, where D is a diagonal matrix. Moreover, let us
denote the i-th column of B as v; and let us define

3
lloill* == BjiBji;
J J

Jj=1

furthermore, let us suppose that v; # O for every i. Since the columns of B are the rows
of BT, if we replace the rows of BT with v /||v;||?, we obtain that the new matrix,
which we denote as B,,, is orthogonal. In particular, we may assume that B, € SO(3)
(otherwise, we could replace it with —B,,;); thus, putting a”! = B, and ay = I3 in
(2.1), we have that

a_'Ba, = B, B = L.
By the expressions of the entries of the matrices A and B, it is easy to obtain

_ N s
Ri35 :2[(§+2> —— =0;

PR PSS 1) =
D) -

The two equations can hold simultaneously if and only if = +/3 4 /17, which implies
that

S_3(1+m)

However, since S is invariant under change of frames, we can choose

010
a_=1-100], ar =1
001
in (2.1) in order to obtain
0-10
B=]|10 0];
001
now, it is easy to compute
— S
R =—t+—=0,
12,5 + B

which holds if and only if

S 12 3(V/17-3) ” 3(1+/17)

2 2 2 '
Therefore, we get a contradiction and we conclude that at least one of the columns of B
must be made of zeros for every e € O (M)_, which obviously implies that (M, g) is an

Einstein manifold.

@ Springer



13 Page180of44 Annals of Global Analysis and Geometry (2023) 63:13

(2) We know that $* and every locally symmetric, self-dual, Ricci-flat manifold have locally
symmetric twistor spaces, by Proposition 4.6. Conversely, let us suppose that (Z, g;)
is locally symmetric: in particular, it is Ricci parallel, therefore (Z, g;) is an Einstein
manifold or (M, g) is Ricci-flat.

If S # 0, by (B.1), it is easy to compute

Rssssat' = L {[-2 03+ 02 00 + 5 013 0
5653,u = ) ) 34 ) 23 @42 4 13 14

r 2 1 02
O — §(Q13) (S5} +§Q23}

3 3
t°S 365 288 t°S 12 24
=— (S -+ =) =—(S-=|[s-5) =0,
6912( 2T > 6912( t2>( t2>
whichholdsifandonlyif S € {12/t2, 24/12}. Since (Z, g;) must be an Einstein manifold,
this implies that § € {6/¢2, 12/t%}: therefore, S = 12/¢> and, by Theorem 4.3, we

conclude that (M, g) is a spherical space form.
Finally, let us suppose that S = 0, i.e., (M, g) is Ricci-flat. Since

Rabed.e = Rabed.e, foreverya,b,c,d,e =1, ..., 4,

it is apparent that (M, g) is locally symmetric by hypothesis and this ends the proof.
O

5 A quadratic formula for VJ and higher-order conditions
5.1 General quadratic formula for the square norm of VJ
We begin stating a general result:

Theorem 5.1 Let (M, g) be a Riemannian four-manifold and (Z, g, J) be its twistor space.
Then, the equality

1 1
VI = §|dw|2+ §|NJ|2 (5.1)

holds, where |dw|? =Y "°

=1 do(ep. eq.e)dow(ep, eq, e,)anleJ|2=Z6 N! N!

p.q:t=1""pq""pq:
Proof By direct computation, we obtain

2

1\? 1
ldw|?* = 61> |:Q122 + 012+ 013° + (Qw - 72) + <Q14 — 72) +
1\? 1\?
2 2 2
+ Q4"+ <Q23 - 72) + 023" + Qu” + <Q42 - 72) +
+ @34% + Q342} ;-

INJI> = 8°[(@15 + Qa2 — Q14 — 023)* + (Q1a + O3 + @13 + Ou)°].

Comparing these expressions with (C.4), it is easy to obtain (5.1). O
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It is worth to point out that Theorem 5.1 allows to give alternate proofs of some well-known
results due to Muskarov (see [24]), exploiting the quadratic relations among the invariants
listed by Gray and Hervella (see [19]). For instance, we can reformulate the following

Proposition 5.2 Let (M, g) be a Riemannian manifold and (Z, g;, J) be its twistor space.
Then,

(ngh'l)EN’CUAK@(nghJ)EK:v

where NK, AK and K denote the classes of nearly Kiihler, almost Kihler and Kiihler
manifolds, respectively.

Proof One direction is trivial. Let us suppose Z € N'K. Then, by table IV in [19], we know
that

1
VI = <ldol*;
[VJ] 9 ldowl|
inserting this equation in (5.1), it is easy to obtain
ldol® = [Ny? = 0= |VJ|> =0,
thatis, Z € K. Now, let us suppose Z € AK. By the same table, we have that
1
IVJ]> = Z|N]|2 and |[dw|*> = 0;
again, inserting these equations in (5.1), we obtain IVJI2 =0,ie.,Z e K. O
In fact, by analogous calculations, we can prove more. Let us consider the sixteen classes of

almost Hermitian manifolds listed in [19]. Then, by Theorem 5.1, we can obtain an alternate
proof of the following statement, which was first proven by Muskarov (see [24]):

Theorem 5.3 Let (M, g) be a Riemannian four-manifold and (Z, g;, J) be its twistor space.
If (Z, g1, J) belongs to one of the first fifteen classes of almost Hermitian manifolds, then
(Z, g, J) € H; consequently, (M, g) is self-dual.

5.2 Laplacian of the almost complex structures

In this section, we consider the Laplacian A ;J of the almost complex structure J (for the
definition and the components, see D). We say that J is harmonic if A jJ = 0 (see also [37]
and [38]). By a direct inspection of the components listed in D, we can provide an alternate

proof to a well-known result, due to Davidov and Muskarov (see [11]):

Theorem 5.4 Let (M, g) be a Riemannian four-manifold and (Z, g, J) be its twistor space.
Then, J is harmonic if and only if (M, g) is self-dual.

Proof One direction is trivial; indeed, since (M, g) is self-dual,
1 1 5 5
AyJy =2A12+ ?[NMAB — Nj3A12] =0;

1
AJJ41 =2A1;3+ Et[NaAlz - Nf3A13] =0,
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where the N [’,q are the components of the Nijenhuis tensor of J (see (E.1)). Moreover, as
an immediate consequence of the self-duality condition and the second Bianchi identity, by
(A.1) and (D.2) it is easy to show that

ApJd =Ag0d =003 =008 =0.

Conversely, let us suppose A;J = 0. By the explicit expression of A;J;/ and N, listed in
(D.1) and in (E.1), respectively, we obtain the global equations

2417 — 212 Ax3 A3 — 1 A1p(Ass — Ap) = 0;
2413 — 212 Ax3 A1y — 12 A13(A3s — Ap) = 0. (5.2)

Again, let us choose a local orthonormal frame e € O (M) such that A is a diagonal matrix.
By the transformation law for the matrix A defined in (2.1), choosing the matrix

=5l=5l-
>S5l =4 -

and using the equations (5.2), we obtain
2 1
(A — A1) - A3z + E(All +An) | =0.
Let us suppose that A1 # App; this implies immediately that

1 2
Azz = E(A” + A») + -

With similar computations, it is easy to show that, if this equation holds, by (5.2) we must
have
A Ay = 4 VvV A Ay = 4

In both cases, choosing the matrix

1 3
1oV3,
2 2
a+ = é 1 0
2 2
0 0 1

and applying the transformation law for A, the equations (5.2) lead to

3 5
V2w o
t 34/3t2
which clearly are contradictions. Thus, Aj; = Az;; by analogous computations, we easily
obtain Ay; = A3z. Therefore, we can conclude that (M, g) is self-dual. O
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5.3 Nijenhuis tensors of Jand J

Now, let us consider the Nijenhuis tensors N; and Ny associated to J and J, respectively. The
expression of the components Jq’f , and Jf;,, of the covariant derivatives of J and J are listed
in (C.3) and (C.5), while the components of the tensors N; and Ny are listed in (E.1) and
(E.6), together with the components of their covariant derivatives and their divergences in
(E.3) and (E.7). Thus, let us recall the local expression of the divergences of N; with respect
to a local orthonormal coframe and its dual frame:

diVN] = Nt

g 07 ®07  divN; =N, 07 ®e,, (5.3)

p

where VN = N,’;’SOS ®0' ® 07 ® ep. The following theorem is a generalization of a result

due to Atiyah, Hitchin and Singer, which characterizes self-dual four-manifolds as the ones
whose twistor space is Hermitian with respect to J (see [1] and [5]):

Theorem 5.5 Let (M, g) be a Riemannian four-manifold and (Z, g:, J) be its twistor space.
Then, (M, g) is self-dual if and only if div Ny =0 Vv divN; = 0.

Proof One direction s trivial: indeed, we know that, if (M, g) is self-dual, Ny = 0. Therefore,
it is easy to see that div Ny = divN; = 0.
Conversely, let us suppose that div Ny = 0. By (E.1) and (E.4), we have

4
Az| A3z — A — )

+2A3A1, =0
4 )
App| A3z — A + 2 —2A3A;3 =0

Let us choose a frame e € O(M)_ such that A is diagonal. By (2.1), choosing

ay =

SR
S8l |-

for the transformed matrix we obtain
1 4
(A2 — A11)|:§(A11 +Axn) — 7~ A33] =0,
that is,
1 4
Al =AnVAy; = E(A” + Axp) — 7

Let us suppose Aj; # As;. By choosing
/3

2
a4y =

o@&ww

0
7 0
0 1
and applying again (2.1), it is easy to see that A1 = App, which is a contradiction. Thus,
with respect to e we have that Aj; = Aj,. By a similar argument, one can easily show that
Ayl = Aszz,ie., (M, g)is self—du&

Now, let us consider the case divN; = 0 and let us choose again a frame e € O(M)_
such that A is diagonal. Then, since by hypothesis

1 2
Nlt,t + N2t,t =0,
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we can rewrite this equation as
2
(A33 — An)” =0,

which means that Ay, = A3z3. The equation above holds for every frame with respect to
which the matrix A is diagonal; thus, similarly we can obtain Aj; = A2, ie., (M, g) is
self-dual.

O

As a consequence, it is immediate to show the validity of
Corollary 5.6 (M, g) is self-dual if and only if VN; = 0.

We point out that the equation VN; = 0 has been studied in the wider context of almost
Hermitian manifolds: for instance, Vezzoni showed that any almost Kéhler manifold that
satisfies this condition is, in fact, a Kdhler manifold (see [36]).

Note that, on the contrary, a simple inspection of the coefficients listed in (E.7) shows that
V Ny never vanishes (the fact that J is never integrable was first proven by Eells and Salamon
[15] and itis apparent by (E.6); we also mention that, if (M, g) is Einstein and self-dual, Ny is
parallel with respect to the Chern connection V¥ defined on (Z, g, J), as shown by Davidov,
Grantcharov and Muskarov [9]); thus, we cannot obtain an analogue of Corollary 5.6 for
Nj. However, we can consider the divergences div Ny and divNy of Nj (the components are
listed in (E.8) and (E.9)) and state the following

Theorem 5.7 Let (M, g) be a four-dimensional, self-dual Riemannian manifold. If M is
Ricci-flat, then divNy = 0. If the scalar curvature S of (M, g) is different from 6/t%, then
the converse holds.

Proof Suppose that (M, g) is Ricci-flat, i.e., Ric = 0. In particular, (M, g) is Einstein,
self-dual with S = 0. This implies that
@1n=01u=03=03:=0n=013=0xn=0u=0
@13 = 0u = @14 = @23 =0.
In particular, by the second equation we obtain

T=0=(2),=0Va=1,..4.

Therefore, divNy = 0, by direct inspection.
Now, let us suppose that divNy = 0 and S # 6/¢%. It is easily shown that the hypothesis
on the scalar curvature leads to

2
Y- ) #0, on O(M)_.
Indeed, if ¥ — = 0, the matrix A appearing in the decomposition of the Riemann curvature
operator has the form
S

122 0
A: Oﬁlos
00 5-—7

for every local orthonormal frame, since M is self-dual. Then, we must have
S 1 S 6

s -2 S=—,
12 ¢ 12© 12

@ Springer



Annals of Global Analysis and Geometry (2023) 63:13 Page230of44 13

which is a contradiction. Thus, by hypothesis, we must have
O +01u=013+0n=00+03=0pn+01u=013+0n =014+ @3=0
O =03 =@01=031=0.

These equations immediately imply that (M, g) is Einstein with § = 0, i.e., M is Ricci-flat.
0
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Appendix A: Divergence of the self-dual part of the Weyl tensor
We list the components of the divergence of W+ in a Riemannian four-manifold.

+ e + e =+ e + e,
W, bed,e®@ = =dW,, abcd -V, bcdw - W, ecd®h W, bedPec 14 bee®@d>

a e a a a

(8W+ abc — Z chae,e = Z eabc, e 8W+)abc = _(6W+)acb'

By (2.2) and (2.3), we obtain:

(Sw+)121 i(@lz,z + Qi35+ Quay) — ﬂSz;
(W) 5 = i(Q12,2+Q13,3+Q14 4)—%&,
(BWF) = %(Q122+Q1%3+Q14 1) — 554;
(6W+)212 %(le 1 — 053+ Quy) — %Sl;
(3w+)21% %(Qlll — 053+ Oun4)— %SA;;
W)y, = %(le 1 — 0235+ @ua)+ 214S3;
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BW)5, = i(QB,l + 023, — Q34)+ iS4
(W35 = %(QB,I + 023, — O3 y4) —
(W) = (@151 + @232~ @30) — 552
(5W+)412 = %(QM,I —Qpo+ Qu;) —
BW)ys = %(QM,I —Ouno+ @ 3) +57
W), = i(QM,l — Quno+ 0343) —

Appendix B: Riemann curvature of a twistor space

(A.1)

We recall here all the components of the Riemann tensor, the Ricci tensor and the scalar

curvature of the twistor space for a Riemannian four-manifold (see also [22]).

Components of the Riemann curvature tensor Riem on (Z, g;):

— 1
Rabed = Rabed — le [(Qac de - Qad ch)

Rabse =

Rapes =

Rs6s6 =

4
1
= _th Z Ouc @bpes

Rsaps

Rsape =

Reabe =

Reaps =

Components of the Ricci tensor and Ric and of the scalar curvature S:

+(Qac de - @ad QbC)]
1
= 51" (Qab Qea + Qap @ca);
1 4
Qup — th Z (Qac Obec — Cpe Buac);
c=1

1 — 1
_Et(Qab)d Rapes = _Et(Qab)d

1 _
=5 Rsesp = Rseas = 0;
t

c=1

4
1 1
_5 Qup _th ; Ope Oac:
1 4
_th 21: OacOpe;
c=

4

1 1

5 Qab _th Z ch Qac .
c=1

4
— 1
Rap = Rap — EtQ Z (Qac Ove + Qac Ope);
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4
— 1
Ras = 51 ) (Qac)e;
c=1
_ &
Rue = it Z (Qac)c;
c=1
- L7 2.
Rss = ) + Z|Qab| ;
_ 1, &
Rs6 = le Z Qac@ac;
a,c=1
- 17 5
Ree = Pl + Z|Qah| ,
S = 3 _ 1 2 2 2
§S=S8+ 5 41 (1@ab|” + 1@upl”)

(here: |@up|? = Zj,b:l (@up)?, and similarly for @,5).
Components of the Weyl tensor W:

(B.2)

(B.3)

— 1
Wabed = Raped — th[(Qac de - Qad ch) + (Qac @bd - @ad ch)]

1
— 72(@@ Ocd + Oub Ocd)

1
4

1
— [ Rpe — 5[2(Qbe ch + Qbe ch)i| Sad

i 1
+ | Roa — Erz(Qbe Ode + Obe @de)} Sac

[ 1
- Rad - Etz(Qae Qde + Qae @de):| (Sbc}

S
+ %((Sacsbd - 8adfsbc);

— 1 3, 1,
WSabS = ZRab - gt Qac th - gt Qac ch

3 3, > I 5 5 S
— —t . —1 . — — ) Sub
+ < + | ch | + 30 | ch | 20 ab

2062 40

_ 1 3, 1,
Weabe = ZRab - g[ Qac ch - gt Qac ch

3 3, S )
- —t —t I
+< * 20 |ch|+80 | Qca | 20

2012

1 1 1
Wach = _5 (Qab,c + Z de,d 8ac - Z Qad,d 8bc>

1 1 1
Wabc() = _Et <Qab,c + Z @bd,d ‘Sac - Z @ad,d 8170) 5

1
+ —*{ |:Ruc - EIZ(Qae Oce + G ch)i| Obd

’
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_ —_ 1
Wabse = Rabse = Qap — th(Qac Ove — Obe Dac);

_ 1 1
WSah() = _5 Qab _th Qac th +

— 1
Wseas = g @ab,b;

— 1
Wsea6 = _§Qab,b§
3 S

_ 3
Wsese = —5 + ~— — —12(| @ap I + | @up ).

5t2 20 40

4

1

Btz dzl ch ch (Sab;
c,d=

(B.4)

Let (Z, g;, J) be a Kihler—Einstein manifold. By (B.1), the components of the Riemann

tensor Riem of Z are

_ 1 _ _
Rs656 = 7 Rs6a6 = Rsesp = 0;
Rsaps = Reabe = _E(Sab;
Rsi26 = Rs3a6 = —Rs216 = —Rsa36 = vk
Rsape =0 for (a,b) # (1,2), (3,4);
Each = iach =0
— — 1
R = R = —F,
1256 345 = 53
Rapse =0 for (a,b) # (1,2), (3,4);
Ri2i2 = Ri212,  R3a3s = Raaza;
Ri313=R 3 Ruu =R 3
1313 = Rizi3 = 777, Rapaz = Rapar — 75
Risisa =R 3 Ry303 =R 3
1414 = Riaia — -5 Ro3os = Roas — -7
_ 1
Ri234 = Rioza + =3
1234 1234 + 73
_ 1
Ri342 = R34 — yvol
Ris3 =R L.
1423 = Ruazs — -5

Rabed = Rabed

The components of VRiem are

for the other components.

(B.5)

Rs656,6 = Rs65b,t = Rs6a6,1 = Rsabs,t = Reab6,r = Rsab6,r = Rabse,r = 0;

Raved,e = Rabed,es  Rabed,5 = Rabed,6 = Rabes,s = Rabes,6 = Rave6,5 = Raves,6 = 0;
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13

20R12c51 = —Riae3; 2Ri3e51 = 581c — Ri3es;
21R12¢5,2 = Riess 21R13¢52 = Rizess
2R1253 = 582 — Rizie; | 20Ri3e5.3 = 583 — Rizies
2Ri2es54 = £81c — Rz (20Ri3e5.4 = —Rizea;
20R14¢5,1 = —Riae3; 20R235.1 = 582 — Roses;
21Ri4cs2 = Riges — 581c; ) 20R2352 = Roseas
2R14e53 = 584 — Riaie; | 20R23e53 = Rosen;
21R14¢5,4 = —Riaea; 21R23¢5.4 = Rozae — 583c;
21Rucs,1 = Ranes; 20R34c5.1 = Raaze — 04c;
20Ryucs2 = Razae — 02c; | 2t R3acs52 = Rages — 583c:
2tRo4cs,3 = —Rael; 21R34¢53 = Raact;
2tRo4cs4 = Raper — %254c; 2tR34c5.4 = —R3se2
21R12¢6,1 = —Ri2es; 21R13¢6,1 = —Ri3e4;
21R12¢6,2 = —Ri2e3; 2R13¢62 = 581 — Ri3es;
2Ri2e63 = Rizea — 501c5 | 2R 1363 = Rizeas
2Rize64 = 58 — Riaie; | 20R13c6.4 = 783 — Rizics
2R1ac61 = 581 — Riaca;  [20R23c6,1 = —Rozes;
21R14¢6,2 = —Riac3; 2tR23¢6.2 = 5 82¢ — Rases;
20R14c6,3 = Ruaca; 2R23c63 = %583 — Rosacs
2Risc64 = 584c — Riare; | 20R23c6.4 = —R31c5
2tRouc6,1 = tlz5 — Runac; 2tR3406,1 = t125 — R34c4;
2tRuc62 = Raes; 21R34c6.2 = Raaze — 04c;
2R4c63 = 584 — Rapas | 20R3ac6.3 = R3aca;
2tRo4c6.4 = Ranics 2tR34c6.4 = —R3a1c

The general expressions of the components of VRic are

2
— t
Rab.c = Rap,c — E[Qad,c Opd + Bvd,c Cad + Buad,c @bd + Obd,c Buadl

2
t
- Z[Qad,d Ope + de,d Quc + @ad,d Ope + @bd,d Qacl;
— t t
Rab,S = E(Qac ch + ch Qac) - E(Rac ch +Rbc Qac)+

3
+ *[Qac(ch Opa + Ocd @pa) + Opc(Bcad Bua + @cd Bua)l;

7(117 6 = (Qac ch + ch Qac) - (Rac ch +Rpe Qac)+
3

+ Z[Qac(@cd Bpa + Oca @pd) + Opc(Bca Cud + Gca Qua)l;

=

= 0w (L1600l + L) + 7 00 0uc0uc ]t
a5,h—2 ad ,db ) ab 4 cd t2 4 ab Ydc Zdc
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2
t 1t
+ 5 Oap |:Rad - E(Qac Ouc + uc @dc):l;
Ruo = - Outr— [0 (1000l + L)+ 00 00|t
ab,b = 2 ad ,db ) ab 4 cd 2 4 ab Ydc Zdc

2
t 1t
+ 5 Oap |:Rad - E(@ac Ouc + Quc Qdc)j|;
_ 12
Ra5,5 = _Z ch,d Qac;
— 1 2
Ras6 = 5 Qac,c _Z ch,d Qac;

1 12
Ra6,5 = _E Qac,c _Z @cd,d Qac;
_ 12
Ras6 = _Z ch,d Quc;

2
— t
RSS,a = E(ch ch‘,a + ch‘,c Qba);

_ _ t
Rss55=0, Rss56= 3 Quc Quc;

2
— t
Re6,a = ?(ch ch,a + ch,c Opa);

_ t _
Re6,5 = —3 Quc Qac,  Res,6 =0;
_ 2

Rs6,q = 7 [ch Ovcq + Ove Obe ot

+ Qbu ch‘,c + Qba QhC,c];
_ ' _ t
Rs65 = ~1 Qu» Qap,  Rse6 = 1 Qub Qub- (B.7)

The covariant derivative of the scalar curvature S has components
2

%[ch Ove.a + Ove Opel:
S5 = % O Ope. Se= —% Obe Oe. (B.8)

Sa =84 —

Appendix C: Covariant derivative of the almost complex structures and
differential of the Kdhler forms

In this appendix, we list all the components of the covariant derivative of the almost complex
structures J* on Z. Recall that

3
Jt = Z (92k_1 R e — 6%k ®62k_1>

k=1
=9]®ez—92®61+6’3®e4—04®e3i95®66:|:6’6®e5; (C.1)
using the same notation of the article, we write J*= = J, J~ = J.
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Computation of VJ on (Z, g;, J):
The covariant derivative VJ of an almost complex structure is defined as

VI =1U0"®07®e,, where J;, =dJ] — oy +Jjof T, =—J,,,

(C2)

with respect to a local orthonormal frame {6} and its dual frame {e,}. Using (C.2), a long
but straightforward computation shows that:

I 3 _ 45 _ o
SHi=Ji,=Js,=0;

J3l’a =0

1
Jis==51(Q1s + @23);

12
J36= a2~ (@14 + 023) |;
Jia =0

, 12
Jis= _Et 7z (@13 + Q) |

1
Ji6=51(@13+ Qu);

1

Jo,= =51(@2 + @10);
1 1 .

Js,s = ‘]5,6 =0;

1
Joo= 31(@1a = @)

‘132,t J41z’
‘]42.1‘ == %lt
'152,1 = 611

162,1 = Jslt

1
Bq==51(Qa + Q3a);
3 3 )
Js,s = ‘]5,6 =0;
; 1
J6,a = Et(Q,%a — @4a);
3 3 )
Jos = J56 =0
4 3
Js = Jou
Jo, =—J3,. (C3)

The square norm |V J|> = Zg,q,,=1 I} qJp.q 1S given by

1
t—2|W|2 =[(Q14 + @23)* + (@14 + 923)* + (@13 + On)* + (@13 + Q)+

+(013 — @14 + (042 — 912> + (O13 — 923)> + (Q14 + O)*+
+ (@11 + @137 + (@23 — 0)* + (Q14 — @13)* + (023 + Q)1+
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2 2 2 0 4 8
+2[@127 + Q12" + @3” + 9347] tz[(QB + 0u0) + (Qua+ @23)] + pre

(C4)
Computation of VJon (Z, g;, J):
Again, using (C.2), we have:
Lo=3, =%, =0
J3.=0;
1
J%,s = _EI(QM + 823);
,1r2
J36= Qf a2 (@14 + 923) |;
Jia=0;
. 172
Jis5= _Et = — (@13 + Qa)
’ t
1
Jis=51(Q13+ Qu);
1
I, = —51(02 — @10);
1 1 .
Js,s = J5,6 =0
1
Jé,a = _Et(Qla + @24);
Jos =55 =0;
J%,t = Jélt,z;
2 1
J4,t = _J3,t
2 1
JS,t = _J6,t
J%,t = Jé.t
3 1
J.= _EI(QM — @34);
3 3 .
Js,s = J5,6 =0
1
Jg,a = _EI(Q&J + @44);
Jos =J56=0;
4 3
JS,t = _J6,t
Jo =13, (C.5)

Kiihler forms of J and J:
denoting by w and w_ the Kéhler forms of J and J, respectively, we have:

doy =—1 010 ' AP A +1 010" ANOZA°—1 @130 NP AO+
1 1
+<1Q13 —;)91/\93/\96+<;—IQ14>91/\94/\95+

1
+tQ1491/\04/\96+<;—IQ23)02/\93/\95+IQ23 02 A03 AOO+
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1
—1Q4294/\02/\95+<t Q42—;)94/\02/\96—tQ3403/\94/\05+
+1 Q34 0° AO* NGBS, (C.6)

do_ =1 @10 NOPAO —1 Q10 AP A +1 @130 AP NG+
1 1
- <th3 +;>91 /\03/\96+(;+tQ14>91 A0 A+
1

—tQ14€l/\94/\06+<;+1Q23)02/\93/\95—IQ23 0% A 03 A OO+

1
+tQ4294/\02/\95—<t O +;>94/\02/\96+tQ3493/\94/\95+
—1 034 03 A0 NGO, (C.7)

As far as the codifferentials of w; and w_ are concerned, we have:

Sy =8w_ =1(@12 + 034)0° + 1(@12 + @34)6°. (C.8)

Appendix D: Hessian and Laplacian of J and J

By definition, we have
Vi=Jl.0®60 ®607Qe,,

q, rt

and
ot = = 0= 0L 00 =T
le’rtet = EI[JS r(QZa + @14) + J(, (@2 — Qla)]ea

1

EI{J3V(Q14+Q23)+J4r|: — (@13 +Q42):H

1

+§t{J3,[ (Q14+Q23)]+J4,(Q13+Q42)}

J3,.0 = 3 [16,(Q3a Qua) — 13, (Bua + @34)]0°

1
3 {er(Q14+Q23)+J4r[ (Q13+Q42)”

1

2
Et{h,[ (Q14+Q23)] +J4r(Q13+Q42)}

1
ot = 51[Jg, (@10 = @20) + I, (@20 + Q1) + 13, (O30 — Qua)]
+J 1 (Qaa + @3)0%
1
Baf' = 707130 = @aa) @15 —(Qaa + @30) Q1 +(Q2 + 1) Q3 }6"

2
+ Z#{—(Qla - @) O3 +(Q14 + 023) Cup —[72 — (@1 + stﬂ@ab]eb;

I 1 a 1o 4 5
J350° = _EI(QM + 823),0° + th (@12 + Q34)|:72 —(@p + Q42)}9
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1
- th[(le + @30)(@13 + 00)10°;

1 1,4
Bt =—51(@1a+ @23),60° + Zrz[t—z(Qu +@34) = (@13 + Q) (@12 + Q34)]95

1
- le(le + 01)(@12 + 034)0°
1
Taa®' = 77103 — @aa) Oy +(Qua + @30) @1 (020 + @10) Qap}0”

1 2
= +Zt2{_(Qla — @2) Oup — (@13 + O2) Qup +[72 - (@13 + Q42):| Qab}9b§

1 1
Jis50" = EI(QB + 04),0% — ZIZ(le + 034)(14 + @23)0°

1 4
+ th[ﬁ(glz + 834) — (@14 + 923)(@12 + Q34)]96;

1 1
Jiet' = 51@1+ 00)a0 = 117(Q12 + @3)(Q1s + €220

1, 4 6
+ Zt (@12 + @34) g (@14 + 623) |07,

1

1 1
J5ad' = =51(02 + @12)p8" + 5 (Q1a = Q1a)0° + (@30 = @2)0°

+ %FKQZC + @10) Que —(01a — ©24)O12]

+(Q4a + @30) Q13 —(Q30 — Qua) Q146°

+ 21020 + €10) Buc ~(@10 — 020)012)

+(Qua + @30) @13 —(034 — Qaa) @140
J350" = %z(fc{s +J4.) Qa0

1
I 60 = Et(Jcl,() Och +J3,.0cp)0":

Tt = L1010 — 2000° + (@20 — @10)0® + (@10 + @316
6,at = ) la 2a)b ) 2a da ) la 3a

- %tz[@lc — @20) Quc +(024 + @14) @12]
+(Q30 — Q4a) @13 +(Bua + @34)Q146°
— %tz[@]c — @20) Quc +(03a + @14) Q121
+H(B30 — Qaa) @13 +(Bda + 930) 01405

1

J61,5t9t = Et(Jel,c Ocp +Jcl,5 ch)9b§
1

Joo0' = Et(‘]cl,() + o) Oy 07

3 1 b, 1 s 1 6
J5 00 = —EI(QM + @34)0° + 5(@3(1 + 02,)0° — 5(@4(1 + @14)0
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+3P1@u + €30) Qe ~(©20 + 49100015
+(Q1a — @2) @23 — (@30 — Q4a) @3410°
+ %t2[(Q4c + @30) Quc —(02 + 910013
+ Q10 — 924) @23 —(030 — Q) @3410°;

1
J53,5z9t = 5;(1035 + 153,0) Ocp 6%

1
‘153,6t6t = Et(‘]gﬁ Ocb +153,5ch)91’;

3 t 1 b 1 5 1 6
Jﬁ,az = EI(Q3a - Q4a)b9 + §(Q4a + Q211)9 + 5(@3& - Qla)e

- %tZ[(Qac = Q4c) Qac —(Q1a — @24) @13 —(Q24 + Q1a) @23
+(Qaa + @30)@3410°
- %tz[(%c = @4c) Qac —(Q1a — @24) Q13 —(@20 + Q1a) 023
+ (Qua + 34) 03410°;
Jgs,0" = %z(Jg,c Qch +J.50c5)0";
St = %t(‘lgﬁ + Q) Qv 60"
Bw=dors don =B Bp=Id T =
B =dop S =I5
The local components of the Laplacian A ;J are
ApdY = (AT — IV, IV, I) = AJY =TT T . (D.1)
Explicitly, we obtain
Ajly =AM =AM =0;

1
AT = (@1 + 034) + Zf[le4(Q12 + @31) — N3(@12 + Q34)] =—AyJ}

1
AT} = (@12 + Q34) + Zr[Nﬂ(Qu + @34) — Ni3(@12 + @34)] = A J}

4
1
ApJs =513 (O + Qi)a = —AsJg;

a=1
1 4
Aplg =51 (@10 — Q2o = Ay 3
a=1
1 4
A =51 (Qua+ Q3a)a = —AsJg:
a=1

4
1
AJJG =51 (@30 = Qaada = Ay 3.
a=1
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Note that
AjJs = 2t[(8W+)2]3 — (W) );
Ay = 2[(BWF),4 + (8W+)]3]];
A3 = 2t[(8W+)4]3 + (8W+)3]4];
A = [ ) 1~ 09 )] 2)

Appendix E: Computation of N, N,

Here we consider the Nijenhuis tensors Ny and Ny of J = J* and J = J—, respectively.
We have

N;=N}6"®67®e,, N} =-N,

tqg — qt>
Ny=N{0'®607®e,, N =-NI,

where Nfy = J[ JF, — J5J0 + I3 — J7 4] and analogously for Ni .
Using the definition, (C.3) and (C.5), we have
Nj, =0=Ni, = N3j = Ni = N§;
Niy = —1(@13 + On — Q14 — ©23) = 2t(A33 — An);
Ny = —1(Q14 + @ + @13+ Ou)
=2t(Q14 + 923) = —21(@13 + Qa2) = —41A23;
N7y = —Nj, = =Ny = —N33;
Niy = N33 = Nfy = —Ngy; (E.D)

Components of VN;: by

VN; =N/ 0°®60' ®607®e,, N =-Nb;: (E2)
a — a — -
pas = Npg.6 = 0;
o« L(NS @ NG @ ) (E.3)
pa.b = T \Mpg Bab T pgLab ). :

3 s[1_1 Ls vs.
Nizs = —=Nig| 7 = 51(@13 + Qu) | + ; Ni3Niy:

1 1 1 2
N = N153[; - 7(@14 + Q23)] - Z<N154) ;
Niso = —t[(@13 + @u2)y — (14 + €23),];

1
Niys = =tNG (@12 + @34) — 2@12 + Q3a);

1
Ny = —§’N154(Q12 + @34) —2(012 + @34);

Nipo = —26(014 + 023), = —20(&13 + Q) ;
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1
Niys = Ethg(le + @34) +2(012 + Q34);

1
Niyg = Elesg(le + @34) — 2(@12 + 934);

1
N155,a = §t<N153 @34 +N154Q4a>;
5 5 .
le,s = N15,6 =0;

1

Nisa = Ef(Nijs 93, +N154@4a);
5 5 _

Nie,s = Nig,e = 0;

5 _ a5 .
N23,s - Nl4,s’

5 _ 5 .
N24.x - _Nl3,s’

1
N255,a = EI(N154 Q34 —N153Q4a>;

5 _ NS _
NZS,S - N25,6 =0

1

N256,a = EI(N154 O34 _N153@4a>;
5 5 ,

Nig s = Nig e =0;

5 5,

N3y = Nip

N, = —1(N3 @10 +N5, 02 ):
35,a 2 13 Lla 14<22a );
5 5 .

N3s5=N356=0;

NS = —e(N3 @10 +N, 02 );
36,a ) 13 la 14%2a )5
5 5 .

N3gs = N3ge =0;

1

Nfs,a = _EI(N‘S“ B1a _N]53Q2a)§
5 5 .

Njss = Nyj56=0;

1
N£6,a = _7I(N154 O1a _N153Q2a);

2
5 5 ,
Niss = Nige = 0;
5 .
N56,s =0;
6 .
Nip,=0;

Nips =Niz| 7 = 51(Qi3 + Qa) +Z<N14> ;

6 sl 1 1 5.5,
Nipe = Nig| - = 51(@14 + 023) | +  NisNiy;
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N263 s = N153 s?

N264 s = N154 s

N265 s = NISS s?

N266,s = NISG s

N364,s = N162 s

N365,s - 26 s

N366,s = Nf6 5

NES s = N355 s

Nfé,s = N356 s?

N566,s =0

Thus, we can now compute the components of the two divergences
divN; =N, 07 ®67,  divN; =N}, 07 ®e;.

For the sake of simplicity, let

Then, we have

F:=013+ 04 — @14 — @23 =2(A2x + A33).

t _ t —0N-
Nig, = N3y, =0;

1 1 ! s 8 5
Niz, = =Ny, = 5[@12 + Q34)<N13 - ;) — Ny (@12 + Q34)];

t 8
Nig, =Ny, = 5[(912 + Q34)<N153 + ;) + Ny (@12 + Q34)];

13 _ t _
NaS,t - Na6,t =0.

@ Springer

1
Nllt,z = —§[N153(Ql3 — @)+ Ny (Q1s + Qw)];
1
Mo = =3[ V(@i - @1 - M@ + 01
1
NSIz,z = _th,z = §[N154 012 —N153Q12]§

1
Nil,t = N32t,t = _*[N153 () +N154Q12]§

2
1
N = 5[ Vii(@a — @) — N0 + @) |:
1
N3, = —§[N153(Q42 — ©2) + Ny (0 + Q42)];

1
Nl3t,t = _Nét,t = E(N153 @34 _N154Q34)§

1
Ngz,z = N;‘t,t = §(N153 O34 +N154Q34)§

(E.4)
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N3 = —5[V@1 — 029+ My(@ + @1)]:
3.1 PARMENE 23 14(@23 13) |5
NZ?I,, _ ! Ny (@13 — ©23) — Ni3(@23 + @13) |;
2
4 _Ir.s _ NS .
N3, = 2 Ny (@x — @14) — Ni3(Q14 + O42) |;
Ni =~ N300 — @10) + N3y (@14 + @) |
a0 = 5| Ni3(@a 14 14(@14 42) |5
Ny, =—N§, = —t(D)3 = 2(Q14 + @23)a
N3, = NP, =1(D)g —26(Q14 + 023)3:
NSSz,z = —me =11 +2t(@14 + @23)2;
Nipy = NS, = —1(D)2 = 20(@14 + @23)1;
N§ = Ng, =0. (E.5)
The components of Ny are
N} = —1(013 + @u + Q14 + ©23) = —21(Ap + A33);
2
1
N3s = PR
N?3 = —N§4 = N?4 = Ng3§
1 3 4 4 3 2 2 1.
N35 = =Nys = =Njg = Nps = —Njg = N3g = —Nj5 = Nyg; (E.0)

For the sake of simplicity, let

Y:=013+ 040+ @1s+ 023 =2(Axn + A33).

Therefore, the components of V Nj are:

Ni3 o = ~1()a;
Ni3s =2(012 + @34);
N3 6= —2(@12 + Q3):
N?S,s = _Ng4,s = N?4,s = NgS,s =0;
NéS,s = N?S,s = N‘}6,s = NgS.s =0;
N%(),s = N%G,s = N4215,s = Nzlm,s =0;
Nj,, =0;
2
Nis. = %(2 - %)Qla;
N}3,5 = N%3,6 =0
2
N, = %(2 - %)@la;
N}4,5 = N{4,6 =0;
NiS,s = Niﬁ,s =0

| 1? 2
N3 . = 5 X 0Qla _ﬁQZu ;
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1 _ Nl — 0
N23,5 - N23,6 =0
2

2
N%4,a = _5<E B4 +t7 QZa)?

N%4,5 = Né4,6 =0

N%S,a =0;

Nés,s = 014 + 923;

Nlso = (@14 + ©23) — t%;
N%é,a =0;

Njg s = % — (@13 + Qn):
Nlg6 = —(@13 + Qa2) = —Nis 5
Nijy = Q0 — @34

N;4,5 = N;4,6 =0;

Néé,a =0;

N'},G,s = @12 + @34;

Nigo = @12 + @4

1 1
N45,s = —N3g 53
1
N46,s - 0’
1 1
Nse,s —N3y g3
2
NlZ,s = 0’
2 &
Niza =52 02 —5 91
2
Nizs = N13,6 =0;
2
t 2
N%4,a = E(Z @251 +ﬁ@1a>;
2 2 .
N14,5 = N14,6 =0;
2 1.
NIS,S = _NZS,S’
N2 _ _Nl .
16,s — 26,s°

) 12 2
N23,a = E z— 17 oy
2 2 .
st,s = N23,6 =0;
2
, (2 .
N24,a = 5 ﬁ -Z QZuv
2 2 .
N24,5 = N24,6 =0;

2 _ N2 —0(-
N25,S - N26,s - 0’
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N%4,a = Q34 + Quq;
N%zt,s = N§4,6 =0;
N%S,S = Ni@s = _N;6,s;
N§6,s = _N§4,s;
N}, = @10 — B2
N?z,s = N?z,a =0
2
Ni3, = %(Z - t%) B3a;

3 _ N3 — 0
NlS,S - N13,6 =0;

3 12 2

N14qa = E )y QSa _th4a 5
3 3 .

N14,5 = N14,6 =0;
3 1.

I\116,5 = _N36,s7

3 r 2 .
N237g = 5 X - 72 QSa,
3 3 .
N23,5 =Ny6=0;
5 12 2
Ny, = -5 % Q34 +72@4a ;
3 3 .
N24,5 = N24,6 =0;
3 1.
N25,s = N36,s’
3 .
N34,S = 0’

3 N3 — 0
N35,s - N36,s =0;

NiS,s = NéS,s;

NzG,s = N%&,s;

Ngﬁ,s = _N?Zs;

NéllZ,a =—(0Q1a + 92);
N?z,s = N?z,s =0

2
4 4 .
N13,5 = N13,6 =0;
2
4 1 2 )
Nigq = 5 z - 2 Baa;
4 4 .
N14,5 = N14,6 =0;

4 _ N1
NIS,S - N36,s’
2

t 2
Ngla = 5<2 O4q +72 Q3a>;

12 2
N?la = 7<2 Q4a _ﬁ Q3a>;
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4 4 )
N3 5 =Njy36=0;
2
g _17(2 :
Noy o = S\z 2 ) B4a;
4 4 )
N24,5 = N24,6 =0;

4 _ N .
NZG,S - N36,s’

Ng&t,s = O’

Ngis = N;S s
NgG s = N%6 s
NiS,s = Ni6 s = 0;
NgG,s - N‘l‘Z s
N?Za =0;

2

o
W
I

t
N3 , EE(Q14+Q23);

5 * 21,
Niy6 = 52 (@14 + @23) — 2l

5 .
14,a =0
2
5 .
14,5 = _EE(Q]Z + Q34),

2
t
5 .
N14,6 = —EE(QH + Q34),
5 3
N15s _NB s
5 _ 3
le)s - N14 s’
5 R N
NZ’;,S - N14,s7
5 _ 4
NZSs _N24 s
5 _ 4
I\126 s N23 s?

2
12,5 = 52[72 — (913 + Q42)];

2

t
12.6 = —EZ(QB + @) = _N?z,s?
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6 5 .
Nl3,x - _N14,s’
6 4
NISS - Nl3 s
6 4
Nlés - N]4s!

6  _ 1
N45,s N24 s
6 _n! .
N46,s - N14,x7

6
N56,s -

As far as the two divergences

div Ny = N

.07 ® 09,

are concerned, we have, for the first one,

divNy =N

-
pt,t

0’ Qe,.

2
t 2
Nis, = 5<2 + 72)(@12 + @34) = =Ny, 2
12 2
Ny, =—=(Z+ 35 )@ + @34) = Ny ;
14t — 2 t2 12 34) = N33 4>

Ni,, = g
N}, = i():
Nj, = t22<>: —

all other components are zero. For the second one, we obtain

2
<2 - 72)(@13 + @14);

(E.7)

(E.8)
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t2<2 - E) 0343
2 12 '
22 2o
2\ 12 '
t2<2 - E)(Qn + @23)
2 12 ) o
t2<)3 - g)(Qla — 023)
2 12 ’
=Ng, =0;
= N%t,t’
_N:]it,l"
= N?lt,w
t2<2 - E>(Q42 + @14);
2 12 ’
Ner: = 0;
—1(X)3;
1(X) 4
H(%)1;
—1(%),2;

A ;
2 13 + @42);

22 -x)o -
2 14 + @23);

_2(2_ % ) E.9
=12 14 + ©23). (E.9)
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