The estimation of probability density functions is a non trivial task that over the last years has been tackled with machine learning techniques. Successful applications can be obtained using models inspired by the Boltzmann machine (BM) architecture. In this manuscript, the product Jacobi-Theta Boltzmann machine (pJTBM) is introduced as a restricted version of the Riemann-Theta Boltzmann machine (RTBM) with diagonal hidden sector connection matrix. We show that score matching, based on the Fisher divergence, can be used to fit probability densities with the pJTBM more efficiently than with the original RTBM.

Product Jacobi-Theta Boltzmann machines with score matching / A. Pasquale, D. Krefl, S. Carrazza, F. Nielsen. ((Intervento presentato al convegno ACAT2022 tenutosi a Bari : 23-28 Ottobre nel 2022.

Product Jacobi-Theta Boltzmann machines with score matching

A. Pasquale
;
S. Carrazza;
2022

Abstract

The estimation of probability density functions is a non trivial task that over the last years has been tackled with machine learning techniques. Successful applications can be obtained using models inspired by the Boltzmann machine (BM) architecture. In this manuscript, the product Jacobi-Theta Boltzmann machine (pJTBM) is introduced as a restricted version of the Riemann-Theta Boltzmann machine (RTBM) with diagonal hidden sector connection matrix. We show that score matching, based on the Fisher divergence, can be used to fit probability densities with the pJTBM more efficiently than with the original RTBM.
ott-2022
Statistics - Machine Learning; Statistics - Machine Learning; Computer Science - Learning
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
http://arxiv.org/abs/2303.05910v1
Product Jacobi-Theta Boltzmann machines with score matching / A. Pasquale, D. Krefl, S. Carrazza, F. Nielsen. ((Intervento presentato al convegno ACAT2022 tenutosi a Bari : 23-28 Ottobre nel 2022.
Conference Object
File in questo prodotto:
File Dimensione Formato  
book-of-abstracts (1).pdf

accesso aperto

Tipologia: Altro
Dimensione 77.32 kB
Formato Adobe PDF
77.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/957540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact