The characterization of the Hamiltonian parameters defining a quantum walk is of paramount importance when performing a variety of tasks, from quantum communication to computation. When dealing with physical implementations of quantum walks, the parameters themselves may not be directly accessible, and, thus, it is necessary to find alternative estimation strategies exploiting other observables. Here, we perform the multiparameter estimation of the Hamiltonian parameters characterizing a continuous-time quantum walk over a line graph with n-neighbor interactions using a deep neural network model fed with experimental probabilities at a given evolution time. We compare our results with the bounds derived from estimation theory and find that the neural network acts as a nearly optimal estimator both when the estimation of two or three parameters is performed.

Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning / I. Gianani, C. Benedetti. - In: AVS QUANTUM SCIENCE. - ISSN 2639-0213. - 5:1(2023), pp. 014405.1-014405.9. [10.1116/5.0137398]

Multiparameter estimation of continuous-time quantum walk Hamiltonians through machine learning

C. Benedetti
Ultimo
2023

Abstract

The characterization of the Hamiltonian parameters defining a quantum walk is of paramount importance when performing a variety of tasks, from quantum communication to computation. When dealing with physical implementations of quantum walks, the parameters themselves may not be directly accessible, and, thus, it is necessary to find alternative estimation strategies exploiting other observables. Here, we perform the multiparameter estimation of the Hamiltonian parameters characterizing a continuous-time quantum walk over a line graph with n-neighbor interactions using a deep neural network model fed with experimental probabilities at a given evolution time. We compare our results with the bounds derived from estimation theory and find that the neural network acts as a nearly optimal estimator both when the estimation of two or three parameters is performed.
Machine learning; quantum walks; estimation theory; Cramer-Rao bound
Settore FIS/03 - Fisica della Materia
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
5.0137398.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/956835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact