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ABSTRACT

The characterization of the Hamiltonian parameters defining a quantum walk is of paramount importance when performing a variety of
tasks, from quantum communication to computation. When dealing with physical implementations of quantum walks, the parameters
themselves may not be directly accessible, and, thus, it is necessary to find alternative estimation strategies exploiting other observables. Here,
we perform the multiparameter estimation of the Hamiltonian parameters characterizing a continuous-time quantum walk over a line graph
with n-neighbor interactions using a deep neural network model fed with experimental probabilities at a given evolution time. We compare
our results with the bounds derived from estimation theory and find that the neural network acts as a nearly optimal estimator both when
the estimation of two or three parameters is performed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0137398

I. INTRODUCTION

The characterization and control of quantum processes is a fun-
damental requirement for the realization of quantum protocols and
crucial for the development of quantum technologies.1–3 Controlling
and validating the dynamics of quantum systems, i.e., their
Hamiltonian, is a computationally demanding task to perform with
classical resources, but can be mitigated by the use of Machine
Learning (ML).4–6 ML techniques have been proven to be of substan-
tial aid when adapted to quantum states characterization,7–14 optimi-
zation of control strategies,15–18 quantum state transport19,20 as well as
for parameter estimation and classification tasks.21–28 Concerning the
characterization of quantum processes, Hamiltonian learning strate-
gies have been extensively investigated in order to provide a reliable
solution to this challenge.29–34 Moreover, it is pivotal that the required
information is often not directly accessible and must be inferred start-
ing from experimental quantities.35,36

For parametrized Hamiltonians, this translates in establishing the
values of significant Hamiltonian parameters starting from measured
quantities. This task is akin to what pertains quantum metrology37–40

and can be cast in terms of the multiparameter estimation theory.41 In
the estimation framework, Neural Networks (NNs) have demon-
strated to achieve superior performance in terms of reliability with

finite-size dataset and robustness to noise compared to standard esti-
mators,22 and as such, they appear as a primary candidate for success-
fully estimating parametrized Hamiltonians.

In the class of parametrized Hamiltonians, an exceptionally dif-
fused and useful example is that of quantum walks (QWs). QWs are a
universal and versatile tool that can be harnessed to perform a plethora
of tasks ranging from energy transport42–44 to quantum algorithms,45–51

quantum computation,52–54 and quantum communication.55 In particu-
lar, continuous-time quantum walks (CTQWs) are the quantum analog
of classical random walks56–59 that describe the continuous evolution of
a quantum particle over a set of discrete positions. These positions can
be pairwise linked in different ways, generating graphs with different
topologies. Indeed, the edges of a graph identify all the possible paths
that the quantum particle can walk through. The edges weights, together
with the on-site energies, are the relevant parameters characterizing the
CTQWHamiltonian.

CTQWs are especially useful to model physical phenomena such
as quantum transport of energy in quantum biological systems, quan-
tum routing, and quantum state transfer.60–66 They have been both
realized and simulated experimentally on different platforms, such as
photons,67–69 trapped atoms and ions,70,71 waveguide arrays,72–75

microwaves,76 and nuclear magnetic resonance.77
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In all these tasks, fine tuning of the Hamiltonian parameters is
required in order to achieve reliable and satisfactory results.78–81 The
control of experimental CTQWs usually relies on a set of directly
accessible experimental parameters, which indirectly dictate the values
of the Hamiltonian ones. However, since the mapping between these
two sets of parameters can be particularly involved, in order to reliably
characterizing the Hamiltonian, a detailed calibration linking one set
to the other may not be sufficient. Hamiltonian learning strategies
must, hence, be developed, estimating the relevant Hamiltonian
parameters starting from experimental observables.

Here, we discuss how to successfully address the characterization
of the CTQW Hamiltonian as an estimation problem in a network
with a fixed topology. In particular, we explore how to infer the
Hamiltonian parameters of a CTQW unfolding on a line graph with
n-neighbor interactions, having access only to the probability distribu-
tion on the graph’s sites at a known time t and to the initial state of the
system. By casting the problem in informational terms, we determine
the most suitable measurement configuration and then perform the
estimation with a Deep Neural Network model. Our results show that
our model acts as a nearly optimal estimator, saturating the bounds
established by the estimation theory.

II. RESULTS
A. Multiparameter estimation of CTQW

CTQWs describe the evolution of a quantum particle that coher-
ently moves among a set of Ns discrete positions fjxigNs

x¼1, which con-
stitute a basis for the CTQW Hilbert space. The Hamiltonian
generating the quantum dynamics is expressed in terms of on-site
energies �x and couplings Jxy between sites x and y. Here, we focus on
a CTQW on a line with zero on-site energies �x ¼ 08x and n-neigh-
bor uniform couplings, such that the Hamiltonian can be written as

H ¼ �
Xn

i¼1

XNs�i

x

Jiðjx þ iihxj þ jxihx þ ijÞ: (1)

In this work, the couplings Ji are taken to be positive real num-
bers. This model could be generalized by considering complex cou-
plings, which lead to chiral QWs.82–86 Given the Hamiltonian (1) and
an initial state of the walker jw0i, the evolution of the CTQW at time t
is generated by the operator e�iHt , such that the probability of occupy-
ing site x is expressed as

pxðt; J1;…; JnÞ ¼ jhxje�iHt jw0ij
2: (2)

The squared norm operation in Eq. (2) establishes a non-linear map-
ping between its Hilbert space and the probability distributions in

position space; this non-linearity, together with a high sensitivity to
the initial condition, is linked to a chaotic behavior of QWs that can
be exploited to build secure cryptographic protocols.87–89

The main objective of this work is described in Fig. 1: our graph
is a chain with Ns sites, and the CTQW Hamiltonian is defined by n
parameters Ji, each varying in a known interval which we set as [0,1].
We assume to have control on the initial state jw0i and to have access
to the probability pxðt; J1;…; JnÞ measured at a given time t. We aim
at estimating the Hamiltonian parameters J1;…; Jn. As stated before,
this problem is highly non-linear, making a direct inversion a complex
task. When the Hamiltonian depends only on one parameter, i.e., only
uniform first neighbor couplings are considered, it is possible to
address the problem analytically.90,91 Since we are dealing with an
arbitrary large but finite number of parameters, we can cast this prob-
lem in terms of multiparameter estimation, and, given that our mea-
surement strategy is fixed, i.e., we are performing a position
measurement over all the sites of the chain, we can directly refer to the
classical Fisher Information (FI). In this scenario, the FI is a matrix of
dimension n� n whose elements are defined as

Fij ¼
X

x

@Ji pxðt; J1;…; JnÞ@Jj pxðt; J1;…; JnÞ
pxðt; J1;…; JnÞ

: (3)

By inverting the FI matrix, we can then cast the Carm�er–Rao
bound (CRB), lower bounding the variance of the estimated parame-
ters D2Ji as

M � D2Ji � ðF�1Þii; (4)

where M is the total resources employed for the measurement. This
will serve as a reference to quantify the performance of our estimation.
The CRB can always be saturated with an unbiased estimator.
Estimation protocols conventionally make use of the maximum likeli-
hood or Bayesian strategies in order to derive an unbiased estima-
tor.39,92 Machine Learning techniques have recently shown to provide
a suitable alternative, allowing to perform optimal estimation without
recurring to a detailed model of the problem at hand. Specifically,
Neural Networks (NNs) have been used both in single and multipa-
rameter estimations demonstrating to successfully perform optimal
estimation when trained with a sufficiently sampled dataset.22,25

Furthermore, NNs have proven higher robustness to noise compared
to the other techniques. This black-box approach is particularly helpful
in our scenario as, for most instances, pxðt; J1;…; JnÞ cannot be evalu-
ated analytically. This complicates the use of traditional estimators in
that the probabilities need to be sampled numerically. This issue is
usually circumvented by employing Markov chain Monte Carlo
methods93 to evaluate an estimator by sampling the numerical

FIG. 1. Conceptual scheme. Starting from a given initial state, a system undergoes a CTQW, and the position probabilities at a time t are recorded. These are then used as
input for a deep neural network, which outputs the values of the Hamiltonian parameters defining the CTQW.
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probability distributions; however, contrary to the NN approach, these
methods rely individually on punctual estimations of the probability
distribution and may introduce biases in the estimation, which need to
be accounted for.94

The CRB in Eq. (4) will depend on all the Hamiltonian parame-
ters Ji as well on other parameters defining the evolution, i.e., the evo-
lution time t and the chain length Ns. Before moving onto the
estimation of the Hamiltonian parameters Ji, we, thus, need to set a
value for these other parameters by finding a viable regime in which to
perform the estimation, dictated by the maximum amount of informa-
tion extractable. For the sake of simplicity, we consider n¼ 2, so that
only the first and second neighbor couplings can be active. This helps
in the visualization of the results, but a similar analysis can be carried
out with an arbitrary number of parameters. We consider five possible
lengths for the chain, Ns ¼ 5; 10; 20; 30; and 100 and five possible

evolution times t ¼ 1; 2; 5; 10; and 20 and evaluate the FI elements of
Eq. (3) for each combination of Ns and t. The derivatives in Eq. (3) are
computed numerically. We consider as the initial state a fourth-order
supergaussian with r ¼ 12 centered at the center of the chain. This is
fixed independently from the chain length. The results are shown in
Fig. 2 in panels (a)–(c). Each plot in these panels is a 2D map of Fij as
a function of J1 and J2. We can draw the following conclusions: at short
times and for a short chain, the Fisher information is non zero for
both couplings and shows some structure depending on the parame-
ters’ values. At short times and for longer chains, the information
decreases. This is because at longer lengths, the initial state is not
spread across the whole chain, and we are performing a measurement
over many sites which have not yet undergone any evolution and,
thus, carry little information. This could be mitigated by employing
different measurement strategies such as localized measurements

FIG. 2. Information and probability space. Fisher Information Matrix elements, F11 (a), F22(b), and F33(c). Each 2D map is the FI element evaluated as a function of the cou-
plings J1 and J2 varying in the interval [0,1]. Each element is evaluated for different evolution times (columns) and chain lengths (rows), with t ¼ 1; 2; 3; 10; and 20 and
Ns ¼ 5; 10; 20; 30; and 100. Panel (d) shows the five position probabilities px for a 5-site chain as a function of the couplings J1 and J2 evaluated at time t¼ 2, while panel (e)
shows the same probabilities evaluated at time t¼ 20.
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addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation

We now proceed with the estimation, while keeping n¼ 2. Based
on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.
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a Gaussian with r ¼ 0:5 centered at the center of the chain corre-
sponding to an excitation mostly divided between two sites of the
graph, and a fourth-order supergaussian with r ¼ 12 centered at the
center of the chain corresponding to an excitation spread across
the whole graph. These are shown in the insets of Fig. 3. Once we have
selected the input state, we perform the following procedure for train-
ing and testing:

1. we generate Nsamp ¼ 214 random values for the couple fJ1; J2g
uniformly distributed in the extended interval ½�0:2; 1:2� in
order to limit the bias due to boundary conditions;22

2. we use the generated couplings to perform the evolution at time
t ¼ 1.5 according to Eq. (2) and record the probability
pxðt; J1; J2Þ for each site x in the chain;

3. we generate simulated counts multiplying the probability
pxðt; J1; J2Þ by the total number of resources which we set at
M ¼ 2� 105, so that pxðt; J1; J2Þ ¼ M � pxðt; J1; J2Þ. This puts us
in a regime where the CRB should be saturated;

4. in order to account for fluctuations, we bootstrap the training
data by running NMC ¼ 500 Monte Carlo routines extracting
new values p0xðt; J1; J2Þ from a Poisson distribution of mean
pxðt; J1; J2Þ;

5. we split the generated dataset into the training (0.8) and valida-
tion set (0.2);

6. we run the training for 200 epochs with a batch size of 1000
using the Adam optimizer with the learning rate set to 10�3 and
adopting as metric the MSE.

In order to test the network, we generate a new set of Ntest ¼ 104

values of the couples fJ1; J2g, now in ½0; 1�, and evaluate the evolved
probabilities, which we multiply by M to simulate the measured
counts. We then perform 300 Monte Carlo runs to account for
Poissonian noise and use the NN model to predict the values of the
couplings for each generated probability. We can then calculate the
error on the estimated couplings as the variance D2Ji over the Monte
Carlo samples and compare it with the CRB, which we obtain from
Eq. (4) by inverting the FI matrix of Eq. (3). As for the analysis of Sec.
IIA, the derivatives of Eq. (3) are evaluated numerically.

The results of the estimation are shown in Fig. 3. The plots show
the agreement between the CRB (surfaces) with the variance on esti-
mated values D2Ji multiplied by the number of resources M (red dots),
indicating that the NN model is able to perform a nearly optimal esti-
mation. The graphs in panels (g)–(l) are slices of the 3D plots for the
errors on the first (second) parameter, when the second (first) parame-
ter is taken to be equal to its maximum value, J2ð1Þ ¼ 1. The NN
model performs comparably for all input states considered.

C. Three-parameter estimation

We now extend the estimation to the case where the CTQW
Hamiltonian is defined by three parameters, by considering also the
third-neighbor coupling J3. We keep the chain length fixed at Ns ¼ 10
and the evolution time at t¼ 1.5. Since there was no significant dis-
crepancy between the estimations starting with different jw0i, we only
consider the localized state, i.e., the Gaussian with r ¼ 0:2. The NN
model we use is the same as for the two-parameter estimation, the
only difference being the number of neurons in the output layer, which
now amounts to three. The training procedure too remains the same,
but since the parameters space has increased, so must the size of the

training dataset. We, thus, now consider Nsamp ¼ 218 randomly gener-
ated triplets fJ1; J2; J3g, while keeping all the other hyperparameters
unchanged. As before, we numerically evaluate the CRB from Eq. (4)
starting from the Fisher information matrix of Eq. (3).

The comparison between the CRB and the estimated values is
shown in Fig. 4. The error on each Ji will now depend on all three cou-
plings fJ1; J2; J3g. In order to keep the consistency with the previous
example, we report the error as a map of the first two couplings, for
different values of the third one, one for each column of Fig. 4. As
before, the surfaces indicate the CRB value, and the dots (fuchsia) are
the variance D2Ji on the estimated points multiplied by the number of
resources M. Panels (p)–(r) show slices of the graphs for the error on
each parameter Ji, while the other two are kept at their maximum
value, Jj;k ¼ 1. The plots still show a good agreement between the esti-
mated values and the CRB, demonstrating a nearly optimal estimation
in this instance as well. This comes, however, at the cost of substan-
tially increasing the dimension of training set, which is expected as the
parameter space increases.

III. DISCUSSION

Characterizing quantum processes with the utmost attainable
precision is of paramount importance in order to harness them for
various tasks. Indeed, errors in the calibration would reverberate in the
task at hand, hindering the reliability of the final result, and as such,
they need to be validated and kept at a minimum.

Here, we have presented a multiparameter estimation-based
approach for characterizing parametrized Hamiltonians, focusing on
the dynamics of CTQWs. Starting solely from experimentally measur-
able quantities, i.e., the position distribution across the graph’s sites,
our method allows to perform nearly optimal estimation of the
Hamiltonian parameters. We have demonstrated our approach by per-
forming the estimation for a CTQW on a line graph for n-neighbor
couplings with n¼ 2 and n¼ 3.

The estimation is carried out using a deep neural network model,
which we train with data simulating experimental measured counts.
These are then bootstrapped to account for Poissonian noise. Our
method achieves a reliable estimation nearly saturating the CRB both
for n¼ 2 and n¼ 3. We have explored the informational content of
the chosen measurement strategy as a function of the graph dimension
and of the evolution time at which the measurement is performed.
This highlights how the measurement strategy over all sites of the
graph performs better when all sites have already undergone an evolu-
tion at a fixed time. If this is not the case, localized measurements
should be investigated. This also shows how, while longer times pro-
vide a higher information content, the highly structured profile of the
probabilities (and hence of the FI) would impose a tighter sampling of
the training set for the NN to successfully reconstruct the profile.
From panels (g)–(l) of Fig. 3, we note how, while the estimated points
follow closely the less-featured values of the CRB, the estimation does
slightly deteriorates when there are two close features. As shown
before,22 this is also critically related to the sampling rate of the train-
ing set, which can be adjusted to attain the desired accuracy.

Our approach provides two main advantages: on the one hand,
casting the problem in quantum metrological terms enables the con-
trol of the uncertainties involved in the process and their bounds,
allowing to explore the informational content of Hamiltonian
characterization. On the other hand, using a NN allows to perform a
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model-free estimation, which is particularly beneficial for CTQW
since the probabilities are often not attainable analytically. However,
both from a conceptual and a resource-based point of view, this
approach is viable when the amount of parameters characterizing the
CTQW is limited: the parametric estimation protocol is not an effi-
cient way for considering a large number of parameters at once.
Supervised learning is also resource-demanding in this sense, as
increasing the number of parameters while keeping the estimation at
the CRB requires increasing significantly the size of the training set, as
it is necessary to sample each dimension in the parameter space suffi-
ciently. While it is difficult to provide quantitative scaling of the com-
putational resources that would be needed in a general CTQW, it can
be already seen from our example that going from a two to a three-
parameter estimation implied increasing the training set of roughly
one order of magnitude. Depending on the computational resources at

hand, this can be a strong limiting factor, although it can be mitigated
by adopting well-established techniques such as batch generators. This
may allow also to extend these results to multiple particles and explore
more complex topologies. Degenerations in the parameter space may
present when exploring more complex CTQW evolutions, but these
can be resolved by measuring the probabilities at two different times,
similarly to Ref. 25. While our approach does offer a certain flexibility,
for large and densely connected networks, a paradigm shift may be
required, and different characterization strategies may be investigated,
for instance, based on search algorithms or reinforcement learning.
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