In this paper, we analyze an eigenvalue problem for quasilinear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to the eigenvalues belong to L-infinity, which implies C-1,C-alpha smoothness, and the first eigenvalue is simple. Moreover, we investigate the bifurcation results from trivial solutions using the Krasnoselski bifurcation theorem and from infinity using the Leray-Schauder degree. We also show the existence of multiple critical points using variational methods and the Krasnoselski genus.

Nonlinear Eigenvalue Problems and Bifurcation for Quasi-Linear Elliptic Operators / W.B.E. Zongo, B. Ruf. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 19:3(2022), pp. 1-31. [10.1007/s00009-022-02015-4]

Nonlinear Eigenvalue Problems and Bifurcation for Quasi-Linear Elliptic Operators

W.B.E. Zongo
Primo
;
2022

Abstract

In this paper, we analyze an eigenvalue problem for quasilinear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to the eigenvalues belong to L-infinity, which implies C-1,C-alpha smoothness, and the first eigenvalue is simple. Moreover, we investigate the bifurcation results from trivial solutions using the Krasnoselski bifurcation theorem and from infinity using the Leray-Schauder degree. We also show the existence of multiple critical points using variational methods and the Krasnoselski genus.
Quasi-linear operators; bifurcation; bifurcation from infinity; multiple solutions
Settore MAT/05 - Analisi Matematica
2022
27-mar-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s00009-022-02015-4.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 573.64 kB
Formato Adobe PDF
573.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/953101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact