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Abstract. In this paper, we analyze an eigenvalue problem for quasi-
linear elliptic operators involving homogeneous Dirichlet boundary con-
ditions in a open smooth bounded domain. We show that the eigen-
functions corresponding to the eigenvalues belong to L∞, which implies
C1,α smoothness, and the first eigenvalue is simple. Moreover, we investi-
gate the bifurcation results from trivial solutions using the Krasnoselski
bifurcation theorem and from infinity using the Leray–Schauder degree.
We also show the existence of multiple critical points using variational
methods and the Krasnoselski genus.
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1. Introduction

We consider Ω ⊂ R
N (N ≥ 2) an open bounded domain with smooth bound-

ary ∂Ω. A classical result in the theory of eigenvalue problems guarantees
that the problem {−Δu = λu in Ω,

u = 0 on ∂Ω,
(1.1)

possesses a nondecreasing sequence of eigenvalues and a sequence of corre-
sponding eigenfunctions which define a Hilbert basis in L2(Ω) (see, [16]).
Moreover, it is known that the first eigenvalue of problem (1.1) is character-
ized in the variational point of view by

λD
1 := inf

u∈W 1,2
0 (Ω)\{0}

{∫
Ω

|∇u|2 dx∫
Ω

u2 dx

}
.

Suppose that p > 1 is a given real number and consider the nonlinear
eigenvalue problem with Neumann boundary condition{−Δpu = λu in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.2)

where Δpu := div(|∇u|p−2∇u) stands for the p-Laplace operator and λ ∈ R.
This problem was considered in [15], and using a direct method in calculus
of variations (if p > 2) or a mountain-pass argument (if p ∈ ( 2N

N+2 , 2)) it
was shown that the set of eigenvalues of problem (1.2) is exactly the interval
[0,∞). Indeed, it is sufficient to find one positive eigenvalue, say −Δpu = λu.
Then a continuous family of eigenvalues can be found by the reparametriza-
tion u = αv, satisfying −Δpv = μ(α)v, with μ(α) = λ

αp−2 .
In this paper, we consider the so-called (p, 2)-Laplace operator (see, [18])

with Dirichlet boundary conditions. More precisely, we analyze the following
nonlinear eigenvalue problem:{−Δpu − Δu = λu in Ω,

u = 0 on ∂Ω,
(1.3)

where p ∈ (1,∞)\{2} is a real number. We recall that if 1 < p < q, then
Lq(Ω) ⊂ Lp(Ω) and as a consequence, one has W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω). We

will say that λ ∈ R is an eigenvalue of problem (1.3) if there exists u ∈
W 1,p

0 (Ω)\{0} (if p > 2 ), u ∈ W 1,2
0 (Ω)\{0} (if 1 < p < 2) such that∫

Ω

|∇u|p−2∇u · ∇v dx +
∫

Ω

∇u · ∇v dx = λ

∫
Ω

u v dx, (1.4)

for all v ∈ W 1,p
0 (Ω) (if p > 2), v ∈ W 1,2

0 (Ω) (if 1 < p < 2). In this case, such
a pair (u, λ) is called an Eigenpair, and λ ∈ R is called an eigenvalue and
u ∈ W 1,p

0 (Ω)\{0} is an eigenfunction associated with λ. We say that λ is a
“first eigenvalue”, if the corresponding eigenfunction u is positive or negative.

The operator −Δp −Δ appears in quantum field theory (see, [5]), where
it arises in the mathematical description of propagation phenomena of solitary
waves. We recall that a solitary wave is a wave which propagates without any
temporal evolution in shape.
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The operator −Δp − Δ is a special case of the so called (p, q)-Laplace
operator given by −Δp −Δq which has been widely studied; for some results
related to our studies, see, e.g., [6,7,10,21,25] .

The main purpose of this work was to study the nonlinear eigenvalue
problem (1.3) when p > 2, and 1 < p < 2, respectively . In particular, we
show in section 2 that the set of the first eigenvalues is given by the interval
(λD

1 ,∞), where λD
1 is the first Dirichlet eigenvalue of the Laplacian. We show

that the first eigenvalue of (1.3) can be obtained variationally, using a Nehari
set for 1 < p < 2, and a minimization for p > 2. Also in the same section, we
recall some results of [15,22,23].

In Sect. 3, we prove that the eigenfunctions associated with λ belong
to L∞(Ω): the first eigenvalue λD

1 of problem (1.3) is simple and the corre-
sponding eigenfunctions are positive or negative. In addition, in Sect. 3.3 we
show a homeomorphism property related to −Δp − Δ.

In Sect. 4, we prove that λD
1 is a bifurcation point for a branch of

first eigenvalues from zero if p > 2, and λD
1 is a bifurcation point from

infinity if p < 2. Also the higher Dirichlet eigenvalues λD
k are bifurcation

points (from 0 if p > 2, respectively, from infinity if 1 < p < 2 ), if the
multiplicity of λD

k is odd. Finally in Sect. 5, we prove by variational methods
that if λ ∈ (λD

k , λD
k+1), then there exist at least k nonlinear eigenvalues using

Krasnoselski’s genus. In what follows, we denote by ‖.‖1,p and ‖.‖2 the norms
on W 1,p

0 (Ω) and L2(Ω) defined, respectively, by

‖u‖1,p =

(∫
Ω

|∇u|p dx

) 1
p

and ‖u‖2 =

(∫
Ω

|u|2 dx

) 1
2
, for all u ∈ W 1,p

0 (Ω), u ∈ L2(Ω).

We recall the Poincaré inequality, i.e., there exists a positive constant
Cp(Ω) such that∫

Ω

|u|p dx ≤ Cp(Ω)
∫

Ω

|∇u|p dx for allu ∈ W 1,p
0 (Ω), 1 < p < ∞. (1.5)

2. The Spectrum of the Nonlinear Problem

We now begin with the discussion of the properties of the spectrum of the
nonlinear eigenvalues problem (1.3).

Remark 2.1. Any λ ≤ 0 is not an eigenvalue of problem (1.3).

Indeed, suppose by contradiction that λ = 0 is an eigenvalue of equation
(1.3), then relation (1.4) with v = u0 gives∫

Ω

|∇u0|p dx +
∫

Ω

|∇u0|2 dx = 0.

Consequently, |∇u0| = 0; therefore, u0 is constant on Ω and u0 = 0 on
Ω. And this contradicts the fact that u0 is a nontrivial eigenfunction. Hence
λ = 0 is not an eigenvalue of problem (1.3). Now it remains to show that any
λ < 0 is not an eigenvalue of (1.3). Suppose by contradiction that λ < 0 is an
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eigenvalue of (1.3), with uλ ∈ W 1,p
0 (Ω)\{0} the corresponding eigenfunction.

The relation (1.4) with v = uλ implies

0 ≤
∫

Ω

|∇uλ|p dx +
∫

Ω

|∇uλ|2 dx = λ

∫
Ω

u2
λ dx < 0,

Which yields a contradiction and thus λ < 0 cannot be an eigenvalue of
problem (1.3).

Lemma 2.2. Any λ ∈ (0, λD
1 ] is not an eigenvalue of (1.3).

For the proof see also [15].

Proof. Let λ ∈ (0, λD
1 ), i.e., λD

1 > λ. Let us assume by contradiction that
there exists a λ ∈ (0, λD

1 ) which is an eigenvalue of (1.3) with uλ ∈ W 1,2
0 (Ω)

\{0}, the corresponding eigenfunction. Letting v = uλ in relation (1.4), we
have on the one hand,∫

Ω

|∇uλ|p dx +
∫

Ω

|∇uλ|2 dx = λ

∫
Ω

u2
λ dx,

and on the other hand,

λD
1

∫
Ω

u2
λdx ≤

∫
Ω

|∇uλ|2 dx. (2.1)

By subtracting both sides of (2.1) by λ

∫
Ω

u2
λ dx, we obtain

(
λD

1 − λ
) ∫

Ω

u2
λ dx ≤

∫
Ω

|∇uλ|2 dx − λ

∫
Ω

u2
λ dx,

(
λD

1 − λ
) ∫

Ω

u2
λ dx ≤

∫
Ω

|∇uλ|2 dx − λ

∫
Ω

u2
λ dx +

∫
Ω

|∇uλ|p dx = 0.

Therefore, (λD
1 − λ)

∫
Ω

u2
λ dx ≤ 0, which is a contradiction. Hence, we

conclude that λ ∈ (0, λD
1 ) is not an eigenvalue of problem (1.3). In order to

complete the proof of the Lemma 2.2 we shall show that λ = λD
1 is not an

eigenvalue of (1.3).
By contradiction we assume that λ = λD

1 is an eigenvalue of (1.3). So
there exists uλD

1
∈ W 1,2

0 (Ω)\{0} such that relation (1.4) holds true. Letting
v = uλD

1
in relation (1.4), it follows that∫

Ω

∣∣∣∇uλD
1

∣∣∣p dx +
∫

Ω

∣∣∣∇uλD
1

∣∣∣2 dx = λD
1

∫
Ω

u2
λD
1

dx.

But λD
1

∫
Ω

u2
λD
1

dx ≤
∫

Ω

|∇uλD
1

|2 dx; therefore
∫

Ω

∣∣∣∇uλD
1

∣∣∣p dx +
∫

Ω

∣∣∣∇uλD
1

∣∣∣2 dx ≤
∫

Ω

∣∣∣∇uλD
1

∣∣∣2 dx ⇒
∫

Ω

∣∣∣∇uλD
1

∣∣∣p dx ≤ 0.

Using relation (1.5), we have uλD
1

= 0, which is a contradiction since
uλD

1
∈ W 1,2

0 (Ω)\{0}. So λ = λD
1 is not an eigenvalue of (1.3). �
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Theorem 2.3. Assume p ∈ (1, 2). Then the set of first eigenvalues of problem
(1.3) is given by

(λD
1 ,∞), whereλD

1 denotesthefirsteigenvalueof − ΔonΩ.

Proof. Let λ ∈ (λD
1 ,∞), and define the energy functional

Jλ : W 1,2
0 (Ω) → R by Jλ(u) =

∫
Ω

|∇u|2 dx +
2
p

∫
Ω

|∇u|p dx − λ

∫
Ω

u2 dx.

One shows that Jλ ∈ C1(W 1,2
0 (Ω),R) (see, [18]) with its derivatives

given by

〈J ′
λ(u), v〉 = 2

∫
Ω

∇u · ∇v dx + 2
∫

Ω

|∇u|p−2∇u · ∇v dx − 2λ

∫
Ω

u v dx ,

∀ v ∈ W 1,2
0 (Ω).

Thus we note that λ is an eigenvalue of problem (1.3) if and only if
Jλ possesses a nontrivial critical point. Considering Jλ(ρe1), where e1 is the
L2-normalized first eigenfunction of the Laplacian, we see that

Jλ(ρe1) ≤ λD
1 ρ2 + Cρp − λρ2 → −∞, as ρ → +∞.

Hence, we cannot establish the coercivity of Jλ on W 1,2
0 (Ω) for p ∈ (1, 2),

and consequently we cannot use a direct method in calculus of variations in
order to determine a critical point of Jλ. To overcome this difficulty, the idea
will be to analyze the functional Jλ on the so-called Nehari manifold defined
by

Nλ :=
{

u ∈ W 1,2
0 (Ω)\{0} :

∫
Ω

|∇u|2 dx +
∫

Ω

|∇u|p dx = λ

∫
Ω

u2 dx

}
.

Note that all non-trivial solutions of (1.3) lie on Nλ. On Nλ the func-
tional Jλ takes the following form

Jλ(u) =
∫

Ω

|∇u|2 dx +
2
p

∫
Ω

|∇u|p dx − λ

∫
Ω

u2 dx

=
(

2
p

− 1
)∫

Ω

|∇u|p dx > 0.

We have seen in Lemma 2.2 that any λ ∈ (0, λD
1 ] is not an eigenvalue of

problem (1.3); see also [15]. It remains to prove the following:
Claim: Every λ ∈ (λD

1 ,∞) is a first eigenvalue of problem (1.3). Indeed,
we will split the proof of the claim into four steps follows:

Step 1. Here we will show that Nλ �= ∅ and every minimizing sequence for
Jλ on Nλ is bounded. Since λ > λD

1 there exists vλ ∈ W 1,2
0 (Ω) such

that ∫
Ω

|∇vλ|2 < λ

∫
Ω

v2
λ dx.
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Then there exists t > 0 such that tvλ ∈ Nλ ⇒∫
Ω

|∇ (tvλ)|2 dx +
∫

Ω

|∇ (tvλ)|p dx = λ

∫
Ω

(tvλ)2 dx ⇒

t2
∫

Ω

|∇vλ|2 dx + tp
∫

Ω

|∇vλ|p dx = t2λ

∫
Ω

v2
λ dx ⇒

t =
( ∫

Ω
|∇vλ|p dx

λ
∫
Ω

v2
λ dx − ∫

Ω
|∇vλ|2 dx

) 1
2−p

> 0.

With such t we have tvλ ∈ Nλ and Nλ �= ∅.

Note that for u ∈ Br(vλ), r > 0 small, the inequality λ
∫
Ω

|u|2dx >∫
Ω

|∇u|2dx remains valid, and then t(u)u ∈ Nλ for u ∈ Br(vλ). Since
t(u) ∈ C1 we conclude that Nλ is a C1-manifold.
Let {uk} ⊂ Nλ be a minimizing sequence of Jλ|Nλ

, i.e., Jλ(uk) →
m = inf

w∈Nλ

Jλ(w). Then

λ

∫
Ω

u2
k dx−

∫
Ω

|∇uk|2 dx

=
∫

Ω

|∇uk|p dx→
(

2
p

− 1
)−1

m as k→∞. (2.2)

Assume by contradiction that {uk} is not bounded, i.e.,
∫

Ω

|∇uk|2 dx

→ ∞ as k → ∞. It follows that
∫

Ω

u2
k dx → ∞ as k → ∞, thanks to

relation (2.2). We set vk = uk

‖uk‖2
. Since

∫
Ω

|∇uk|2 dx < λ

∫
Ω

u2
k dx, we

deduce that
∫

Ω

|∇vk|2 dx < λ, for each k and ‖vk‖1,2 <
√

λ. Hence

{vk} ⊂ W 1,2
0 (Ω) is bounded in W 1,2

0 (Ω). Therefore, there exists v0 ∈
W 1,2

0 (Ω) such that vk ⇀ v0 in W 1,2
0 (Ω) ⊂ W 1,p

0 (Ω) and vk → v0 in
L2(Ω). Dividing relation (2.2) by ‖uk‖p

2, we get

∫
Ω

|∇vk|p dx =
λ

∫
Ω

u2
k dx −

∫
Ω

|∇uk|2 dx

‖uk‖p
2

→ 0 as k → ∞,

since λ

∫
Ω

u2
k dx −

∫
Ω

|∇uk|2 dx →
(

2
p

− 1
)−1

m < ∞ and ‖uk‖p
2 →

∞ as k → ∞. On the other hand, since vk ⇀ v0 in W 1,p
0 (Ω), we

have
∫

Ω

|∇v0|p dx ≤ lim
k→∞

inf
∫

Ω

|∇vk|p dx = 0 and consequently

v0 = 0. It follows that vk → 0 in L2(Ω), which is a contradiction
since ‖vk‖2 = 1. Hence, {uk} is bounded in W 1,2

0 (Ω).
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Step 2. m = inf
w∈Nλ

Jλ(w) > 0. Indeed, assume by contradiction that m = 0.

Then, for {uk} as in step 1, we have

0 < λ

∫
Ω

u2
k dx −

∫
Ω

|∇uk|2 dx

=
∫

Ω

|∇uk|p dx → 0, ask → ∞. (2.3)

By Step 1, we deduce that {uk} is bounded in W 1,2
0 (Ω). There-

fore there exists u0 ∈ W 1,2
0 (Ω) such that uk ⇀ u0 in W 1,2

0 (Ω) and
W 1,p

0 (Ω) and uk → u0 in L2(Ω).

Thus
∫

Ω

|∇u0|p ≤ lim
k→∞

inf
∫

Ω

|∇uk|p dx = 0. And consequently

u0 = 0, uk ⇀ 0 in W 1,2
0 (Ω) and W 1,p

0 (Ω) and uk → 0 in L2(Ω).
Writing again vk = uk

‖uk‖2
we have

0 <

λ

∫
Ω

u2
k dx −

∫
Ω

|∇uk|2 dx

‖uk‖2
2

= ‖uk‖p−2
2

∫
Ω

|∇vk|p dx,

therefore,

∫
Ω

|∇vk|p dx = ‖uk‖2−p
2

⎛
⎜⎜⎝λ‖uk‖2

2

‖uk‖2
2

−

∫
Ω

|∇uk|2 dx

‖uk‖2
2

⎞
⎟⎟⎠

= ‖uk‖2−p
2

(
λ −

∫
Ω

|∇vk|2 dx

)
→ 0 as k → ∞,

since ‖uk‖2 → 0 and p ∈ (1, 2), and {vk} is bounded in W 1,2
0 (Ω).

Next since vk ⇀ v0, we deduce that
∫

Ω

|∇v0|p dx ≤ lim
k→∞

inf
∫

Ω

|∇vk|p

dx = 0 and we have v0 = 0. And it follows that vk → 0 in L2(Ω)
which is a contradiction since ‖vk‖2 = 1 for each k. Hence, m is
positive.

Step 3. There exists u0 ∈ Nλ such that Jλ(u0) = m.
Let {uk} ⊂ Nλ be a minimizing sequence, i.e., Jλ(uk) → m as

k → ∞. Thanks to Step 1, we have that {uk} is bounded in W 1,2
0 (Ω).

It follows that there exists u0 ∈ W 1,2
0 (Ω) such that uk ⇀ u0 in

W 1,2
0 (Ω) and W 1,p

0 (Ω) and strongly in L2(Ω). The results in the two
steps above guarantee that Jλ(u0) ≤ lim

k→∞
inf Jλ(uk) = m. Since for

each k we have uk ∈ Nλ, we have∫
Ω

|∇uk|2 dx +
∫

Ω

|∇uk|p dx = λ

∫
Ω

u2
k dx for all k. (2.4)

Assuming u0 ≡ 0 on Ω implies that
∫

Ω

u2
k dx → 0 as k → ∞, and by

relation (2.4) we obtain that
∫

Ω

|∇uk|2 dx → 0 as k → ∞. Combining
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this with the fact that uk converges weakly to 0 in W 1,2
0 (Ω), we

deduce that uk converges strongly to 0 in W 1,2
0 (Ω) and consequently

in W 1,p
0 (Ω). Hence we infer that

λ

∫
Ω

u2
k dx −

∫
Ω

|∇uk|2 dx =
∫

Ω

|∇uk|p dx → 0, ask → ∞.

Next, using similar argument as the one used in the proof of Step 2,
we will reach to a contradiction, which shows that u0 �≡ 0. Letting
k → ∞ in relation (2.4), we deduce that∫

Ω

|∇u0|2 dx +
∫

Ω

|∇u0|p dx ≤ λ

∫
Ω

u2
0 dx.

If there is equality in the above relation, then u0 ∈ Nλ and m ≤
Jλ(u0). Assume by contradiction that∫

Ω

|∇u|2 dx +
∫

Ω

|∇u|p dx < λ

∫
Ω

u2 dx. (2.5)

Let t > 0 be such that tu0 ∈ Nλ, i.e.,

t =

⎛
⎜⎜⎝

λ

∫
Ω

u2
0 dx −

∫
Ω

|∇u0|2 dx∫
Ω

|∇u0|p dx

⎞
⎟⎟⎠

1
p−2

.

We note that t ∈ (0, 1) since 1 < tp−2 (thanks to (2.5)). Finally,
since tu0 ∈ Nλ with t ∈ (0, 1) we have

0 < m ≤ Jλ(tu0)

=
(

2
p

− 1
)∫

Ω

|∇(tu0)|p dx = tp
(

2
p

− 1
)∫

Ω

|∇u0|p dx

= tpJλ(u0)
≤ tp lim

k→∞
inf Jλ(uk) = tpm < m for t ∈ (0, 1),

and this is a contradiction which assures that relation (2.5) cannot
hold and consequently we have u0 ∈ Nλ. Hence m ≤ Jλ(u0) and
m = Jλ(u0).

Step 4. We conclude the proof of the claim. Let u ∈ Nλ be such that Jλ(u) =
m (thanks to Step 3). Since u ∈ Nλ, we have∫

Ω

|∇u|2 dx +
∫

Ω

|∇u|p dx = λ

∫
Ω

u2 dx,

and ∫
Ω

|∇u|2 dx < λ

∫
Ω

u2 dx.

Let v ∈ ∂B1(0) ⊂ W 1,2
0 (Ω) and ε > 0 be very small such that

u + δv �= 0 in Ω for all δ ∈ (−ε, ε) and∫
Ω

|∇(u + δv)|2 dx < λ

∫
Ω

(u + δv)2 dx;
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this is equivalent to

λ

∫
Ω

u2 dx −
∫

Ω

|∇u|2 dx > δ

(
2
∫

Ω

∇u · ∇v dx − 2λ

∫
Ω

uv dx

)

+δ2

(∫
Ω

|∇v|2 dx − λ

∫
Ω

v2 dx

)
,

which holds true for δ small enough since the left-hand side is positive
while the function

h(δ) := |δ|
∣∣∣∣2
∫

Ω

∇u · ∇v dx − 2λ

∫
Ω

uv dx

∣∣∣∣
+ δ2

∣∣∣∣
∫

Ω

|∇v|2 dx − λ

∫
Ω

v2 dx

∣∣∣∣
dominates the term from the right-hand side and h(δ) is a continuous
function (polynomial in δ) which vanishes in δ = 0. For each δ ∈
(−ε, ε), let t(δ) > 0 be given by

t(δ) =

⎛
⎜⎜⎝

λ

∫
Ω

(u + δv)2 dx −
∫

Ω

|∇(u + δv)|2 dx∫
Ω

|∇(u + δv)|p dx

⎞
⎟⎟⎠

1
p−2

,

so that t(δ) · (u + δv) ∈ Nλ. We have that t(δ) is of class C1(−ε, ε)
since t(δ) is the composition of some functions of class C1. On the
other hand, since u ∈ Nλ we have t(0) = 1.

Define ι : (−ε, ε) → R by ι(δ) = Jλ(t(δ)(u + δv)) which is of
class C1(−ε, ε) and has a minimum at δ = 0. We have

ι′(δ) = [t′(δ)(u + δv) + vt(δ)]J ′
λ (t(δ)(u + δv)) ⇒

0 = ι′(0) = J ′
λ (t(0)(u)) [t′(0)u + vt(0)] = 〈J ′

λ(u), v〉
since t(0) = 1 and t′(0) = 0.
This shows that every λ ∈ (λD

1 ,∞) is an eigenvalue of problem (1.3).
�

In the next theorem we consider the case p > 2. For similar results for
the Neumann case, (see, [22]).

Theorem 2.4. For p > 2, the set of first eigenvalues of problem (1.3) is given
by (λD

1 ,∞).

The proof of Theorem 2.4 will follow as a direct consequence of the
lemmas proved below:

Lemma 2.5. Let

λ1(p) := inf
u∈W 1,p

0 \{0}

⎧⎪⎪⎨
⎪⎪⎩

1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx

1
2

∫
Ω

u2 dx

⎫⎪⎪⎬
⎪⎪⎭

.

Then λ1(p) = λD
1 , for all p > 2.
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Proof. We clearly have λ1(p) ≥ λD
1 since a positive term is added. On the

other hand, consider un = 1
ne1 (where e1 is the first eigenfunction of −Δ),

we get

λ1(p) ≤
1

2n2

∫
Ω

|∇e1|2 dx + 1
pnp

∫
Ω

|∇e1|p dx
1

2n2

∫
Ω

|e1|2dx
→ λD

1 as n → ∞.

�

Lemma 2.6. For each λ > 0, we have

lim
‖u‖1,p→∞

(
1
2

∫
Ω

|∇u|2 dx +
1
p

∫
Ω

|∇u|p dx − λ

2

∫
Ω

u2 dx

)
= ∞.

Proof. Clearly,
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx ≥ 1
p

∫
Ω

|∇u|p dx.

On the one hand, using Poincaré’s inequality with p = 2, we have
∫

Ω

u2 dx ≤

C2(Ω)
∫

Ω

|∇u|2 dx,∀u ∈ W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω) and then applying the Hölder

inequality to the right-hand side term of the previous estimate, we obtain∫
Ω

|∇u|2 dx ≤ |Ω| p−2
p ‖u‖2

1,p,

so
∫

Ω

u2 dx ≤ D‖u‖2
1,p, where D = C2(Ω)|Ω| p−2

p . Therefore, for λ > 0,

1
2

∫
Ω

|∇u|2 dx +
1
p

∫
Ω

|∇u|p dx − λ

2

∫
Ω

u2 dx ≥ C‖u‖p
1,p − λ

2
D‖u‖2

1,p, (2.6)

and the the right-hand side of (2.6) tends to ∞, as ‖u‖1,p → ∞, since
p > 2. �

Lemma 2.7. Every λ ∈ (λD
1 ,∞) is a first eigenvalue of problem (1.3).

Proof. For each λ > λD
1 define Fλ : W 1,p

0 (Ω) → R by

Fλ(u) =
1
2

∫
Ω

|∇u|2 dx +
1
p

∫
Ω

|∇u|p dx − λ

2

∫
Ω

u2 dx ,∀u ∈ W 1,p
0 (Ω).

Standard arguments show that Fλ ∈ C1(W 1,p
0 (Ω),R) (see, [18]) with its

derivative given by

〈F ′
λ(u), φ〉 =

∫
Ω

(|∇u|p−2 + 1
)∇u · ∇φ dx − λ

∫
Ω

uφ dx,

for all u, φ ∈ W 1,p
0 (Ω). Estimate (2.6) shows that Fλ is coercive in W 1,p

0 (Ω).
On the other hand, Fλ is also weakly lower semi-continuous on W 1,p

0 (Ω)
since Fλ is a continuous convex functional (see [4], Proposition 1.5.10 and
Theorem 1.5.3) . Then we can apply a calculus of variations result, in order
to obtain the existence of a global minimum point of Fλ, denoted by θλ, i.e.,
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Fλ(θλ) = minW 1,p
0 (Ω)Fλ. Note that for any λ > λD

1 there exists uλ ∈ W 1,p
0 (Ω)

such that Fλ(uλ) < 0 . Indeed, taking uλ = re1, we have

Fλ(re1) =
r2

2
(
λD

1 − λ
)

+
rp

p

∫
Ω

|∇e1|p dx < 0 for r > 0 small.

But then Fλ(θλ) ≤ Fλ(uλ) < 0, which means that θλ ∈ W 1,p
0 (Ω)\{0}.

On the other hand, we have 〈F ′
λ(θλ), φ〉 = 0,∀φ ∈ W 1,p

0 (Ω) (θλ is a critical
point of Fλ) with θλ ∈ W 1,p

0 (Ω)\{0} ⊂ W 1,2
0 (Ω)\{0}. Consequently each

λ > λD
1 is an eigenvalue of problem (1.3). �

A similar result of Theorem 3.1 was proved in [17] in the case of the
p-Laplacian.

3. Properties of Eigenfunctions and the Operator −Δp − Δ

3.1. Boundedness of the Eigenfunctions

We shall prove boundedness of eigenfunctions and use this fact to obtain C1,α

smoothness of all eigenfunctions of the quasi-linear problem (1.3). The latter
result is due to [17, Theorem 4.4], which originates from [13,26].

Theorem 3.1. Let (u, λ) ∈ W 1,p
0 (Ω) × R

�
+ be an eigensolution of the weak

formulation (1.4). Then u ∈ L∞(Ω).

Proof. By Morrey’s embedding theorem it suffices to consider the case p ≤ N.
Let us assume first that u > 0. For M ≥ 0 define wM (x) = min{u(x),M}.
Letting

g(x) =
{

x if x ≤ M
M if x > M.

(3.1)

we have g ∈ C(R) piecewise smooth function with g(0) = 0. Since u ∈
W 1,p

0 (Ω) and g′ ∈ L∞(Ω), then g ◦u ∈ W 1,p
0 (Ω) and wM ∈ W 1,p

0 (Ω)∩L∞(Ω)
(see, Theorem B.3 in [17]). For k > 0, define ϕ = wkp+1

M , then ∇ϕ = (kp +
1)∇wMwkp

M and ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Using ϕ as a test function in (1.4), one obtains

(kp + 1)
[∫

Ω

|∇u|p−2∇u · ∇wMwkp
M dx +

∫
Ω

∇u · ∇wMwkp
M dx

]

= λ

∫
Ω

u wkp+1
M dx.

On the other hand, using the fact that wkp+1
M ≤ ukp+1, it follows that

(kp + 1)
[∫

Ω

|∇u|p−2∇u · ∇wMwkp
M dx +

∫
Ω

∇u · ∇wMwkp
M dx

]

≤ λ

∫
Ω

|u|(k+1)p dx.
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We have ∇(wk+1
M ) = (k+1)∇wMwk

M ⇒ |∇wk+1
M |p = (k+1)pwkp

M |∇wM |p.
Since the integrals on the left are zero on {x : u(x) > M} we can take u = wM

in the previous inequality, and it follows that

(kp + 1)
[∫

Ω

|∇wM |p wkp
M dx +

∫
Ω

|∇wM |2 wkp
M dx

]
≤ λ

∫
Ω

|u|(k+1)p dx.

Replacing |∇wM |pwkp
M by 1

(k+1)p |∇wk+1
M |p, we have

kp + 1
(k + 1)p

∫
Ω

|∇wk+1
M |p dx + (kp + 1)

∫
Ω

|∇wM |2wkp
M dx ≤ λ

∫
Ω

|u|(k+1)p dx,

which implies that
kp + 1

(k + 1)p

∫
Ω

|∇wk+1
M |p dx ≤ λ

∫
Ω

|u|(k+1)p dx

and then ∫
Ω

∣∣∇wk+1
M

∣∣p dx ≤
(

λ
(k + 1)p

kp + 1

)∫
Ω

|u|(k+1)p dx. (3.2)

By Sobolev’s embedding theorem, there is a constant c1 > 0 such that∥∥wk+1
M

∥∥
p� ≤ c1

∥∥wk+1
M

∥∥
1,p

, (3.3)

where p� is the Sobolev critical exponent. Consequently, we have

‖wM‖(k+1)p� ≤ ∥∥wk+1
M

∥∥ 1
k+1

p� , (3.4)

and, therefore,

‖wM‖(k+1)p� ≤
(
c1

∥∥wk+1
M

∥∥
1,p

) 1
k+1

= c
1

k+1
1

∥∥wk+1
M

∥∥ 1
k+1

1,p
. (3.5)

But by (3.2),

∥∥wk+1
M

∥∥
1,p

≤
(

λ
(k + 1)p

kp + 1

) 1
p

‖u‖k+1
(k+1)p, (3.6)

and we note that we can find a constant c2 > 0 such that(
λ (k+1)p

kp+1

) 1
p

√
k+1 ≤ c2, independently of k and consequently,

‖wM‖(k+1)p� ≤ c
1

k+1
1 c

1√
k+1

2 ‖u‖(k+1)p. (3.7)

Letting M → ∞, Fatou’s lemma implies

‖u‖(k+1)p� ≤ c
1

k+1
1 c

1√
k+1

2 ‖u‖(k+1)p. (3.8)

Choosing k1, such that (k1 + 1)p = p�, then ‖u‖(k1+1)p� ≤ c
1

k1+1

1 c
1√

k1+1

2

‖u‖p� . Next we choose k2 such that (k2+1)p = (k1+1)p�; then taking k2 = k
in inequality (3.8), it follows that

‖u‖(k2+1)p� ≤ c
1

k2+1

1 c
1√

k2+1

2 ‖u‖(k1+1)p� . (3.9)

By induction we obtain

‖u‖(kn+1)p� ≤ c
1

kn+1
1 c

1√
kn+1

2 ‖u‖(kn−1+1)p� , (3.10)
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where the sequence {kn} is chosen such that (kn +1)p = (kn−1 +1)p�, k0 = 0.

One gets kn + 1 = (p�

p )n. As p
p� < 1, there is C > 0 (which depends on c1

and c2) such that for any n = 1, 2, . . .

‖u‖rn
≤ C‖u‖p� (3.11)

with rn = (kn+1)p� → ∞ as n → ∞. We note that (3.11) follows by iterating
the previous inequality (3.10). We will indirectly show that u ∈ L∞(Ω).
Suppose u �∈ L∞(Ω), then there exists ε > 0 and a set A of positive measure
in Ω such that |u(x)| > C‖u‖p� + ε = K, for all x ∈ A. We then have,

lim
n→∞ inf ‖u‖rn

≥ lim
n→∞ inf

(∫
A

Krn

)1/rn

= lim
n→∞ inf K|A|1/rn = K > C‖u‖p� ,

(3.12)
which contradicts (3.11). If u changes sign, we consider u = u+ − u− where

u+ = max{u, 0} and u− = max{−u, 0}. (3.13)

We have u+, u− ∈ W 1,p
0 (Ω). For each M>0 define wM= min{u+(x),M}

and take again ϕ = wkp+1
M as a test function in (1.4). Proceeding the same

way as above we conclude that u+ ∈ L∞(Ω). Similarly, we have u− ∈ L∞(Ω).
Therefore, u = u+ − u− is in L∞(Ω). �

3.2. Simplicity of the Eigenvalues

We prove an auxiliary result which will imply uniqueness of the first eigen-
function.

Let

I(u, v) =
〈

−Δpu,
up − vp

up−1

〉
+
〈

−Δu,
u2 − v2

u

〉

+
〈

−Δpv,
vp − up

vp−1

〉
+
〈

−Δv,
v2 − u2

v

〉
,

for all (u, v) ∈ DI , where

DI=
{
(u1, u2) ∈ W 1,p

0 (Ω) × W 1,p
0 (Ω) : ui > 0 in Ω andui ∈ L∞(Ω) for i = 1, 2

}
if p > 2,

and

DI=
{
(u1, u2)∈W 1,2

0 (Ω) × W 1,2
0 (Ω) : ui > 0in Ω andui ∈ L∞(Ω) for i = 1, 2

}
if 1<p<2.

Proposition 3.2. For all (u, v) ∈ DI , we have I(u, v) ≥ 0. Furthermore,
I(u, v) = 0 if and only if there exists α ∈ R

�
+ such that u = αv.

Proof. We first show that I(u, v) ≥ 0. We recall that (if 2 < p < ∞)

〈−Δpu,w〉 =
∫

Ω

|∇u|p−2∇u · ∇w dx for all w ∈ W 1,p
0 (Ω)

〈−Δu,w〉 =
∫

Ω

∇u · ∇w dx for all w ∈ W 1,p
0 (Ω),
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and (if 1 < p < 2)

〈−Δpu,w〉 =
∫

Ω

|∇u|p−2∇u · ∇w dx for all w ∈ W 1,2
0 (Ω

〈−Δu,w〉 =
∫

Ω

∇u · ∇w dx for all w ∈ W 1,2
0 (Ω).

Let us consider β = up−vp

up−1 , η = vp−up

vp−1 , ξ = u2−v2

u and ζ = v2−u2

v as test
functions in (1.4) for any p > 1. Straightforward computations give

∇
(

up − vp

up−1

)
=
{

1 + (p − 1)
( v

u

)p}
∇u − p

( v

u

)p−1

∇v

∇
(

vp − up

vp−1

)
=
{

1 + (p − 1)
(u

v

)p}
∇v − p

(u

v

)p−1

∇u

∇
(

u2 − v2

u

)
=
{

1 +
( v

u

)2
}

∇u − 2
( v

u

)
∇v

∇
(

v2 − u2

v

)
=
{

1 +
(u

v

)2
}

∇v − 2
(u

v

)
∇u.

Therefore,〈
−Δpu,

up − vp

up−1

〉

=

∫
Ω

{
−p

( v
u

)p−1 |∇u|p−2∇u · ∇v +
(
1 + (p − 1)

( v
u

)p) |∇u|p
}

dx

=

∫
Ω

{
p
( v
u

)p−1 |∇u|p−2 (|∇u||∇v| − ∇u · ∇v) +
(
1 + (p − 1)

( v
u

)p) |∇u|p
}

dx

−
∫
Ω
p
( v
u

)p−1 |∇u|p−1|∇v| dx

and〈
−Δu,

u2 − v2

u

〉

=

∫
Ω

{
2
( v
u

)
(|∇u||∇v| − ∇u · ∇v) +

(
1 +

( v
u

)2
)

|∇u|2 − 2
( v
u

)
|∇u||∇v|

}
dx.

By symmetry we have〈
−Δpv,

vp − up

vp−1

〉

=

∫
Ω

{
−p

(u
v

)p−1 |∇v|p−2∇v · ∇u +
(
1 + (p − 1)

(u
v

)p) |∇v|p
}

dx

=

∫
Ω

{
p
(u
v

)p−1 |∇v|p−2 (|∇v||∇u| − ∇v · ∇u) +
(
1 + (p − 1)

(u
v

)p) |∇v|p
}

dx

−
∫
Ω
p
(u
v

)p−1 |∇v|p−1|∇u| dx

and 〈
−Δv,

v2 − u2

v

〉
=
∫

Ω

{
2
(u

v

)
(|∇v||∇u|−∇v·∇u)

+
(

1 +
(u

v

)2
)

|∇v|2 − 2
(u

v

)
|∇v||∇u|

}
dx.
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Thus

I(u, v) =

∫
Ω

{
p
( v
u

)p−1 |∇u|p−2 (|∇u||∇v| − ∇u · ∇v) +
(
1 + (p − 1)

( v
u

)p) |∇u|p
}

dx

−p
( v
u

)p−1 |∇u|p−1|∇v| dx

+

∫
Ω

{
p
(u
v

)p−1 |∇v|p−2 (|∇v||∇u| − ∇v · ∇u) +
(
1 + (p − 1)

(u
v

)p) |∇v|p
}

dx

−p
(u
v

)p−1 |∇v|p−1|∇u| dx

+

∫
Ω

{
2
( v
u

)
(|∇u||∇v| − ∇u · ∇v) +

(
1 +

( v
u

)2
)

|∇u|2 − 2
( v
u

)
|∇u||∇v|

}
dx

+

∫
Ω

{
2
(u
v

)
(|∇v||∇u| − ∇v · ∇u) +

(
1 +

(u
v

)2
)

|∇v|2 − 2
(u
v

)
|∇v||∇u|

}
dx.

So

I(u, v) =
∫

Ω

F
( v

u
,∇v,∇u

)
dx +

∫
Ω

G
( v

u
, |∇v|, |∇u|

)
dx,

where

F (t, S,R) = p
{
tp−1|R|p−2 (|R||S| − R · S) + t1−p|S|p−2 (|R||S| − R · S)

}
+2 {t (|R||S| − R · S)} + 2

{
t−1 (|R||S| − R · S)

}
and

G(t, s, r) = (1 + (p − 1)tp) rp +
(
1 + (p − 1)t−p

)
sp + (1 + t2)r2

+(1 + t−2)s2 − ptp−1rp−1s − pt1−psp−1r − 2trs − 2t−1rs,

for all t = v
u > 0, R = ∇u, S = ∇v ∈ R

N and r = |∇u|, s = |∇v| ∈ R
+. We

clearly have that F is non-negative. Now let us show that G is non-negative.
Indeed, we observe that

G(t, s, 0) =
(
1 + (p − 1)t−p

)
sp +

(
1 + t−2

)
s2 ≥ 0

and G(t, s, 0) = 0 ⇒ s = 0. If r �= 0, by setting z = s
tr we obtain

G(t, s, r) = tprp (zp − pz + (p − 1)) + rp
(
(p − 1)zp − pzp−1 + 1

)
+t2r2

(
z2 − 2z + 1

)
+ r2

(
z2 − 2z + 1

)
,

and G can be written as

G(t, s, r) = rp (tpf(z) + g(z)) + r2
(
t2h(z) + k(z)

)
,

with f(z) = zp − pz + (p − 1), g(z) = (p − 1)zp − pzp−1 + 1, h(z) = k(z) =
z2 −2z+1 ∀p > 1. We can see that f, g, h and k are non-negative. Hence G is
non-negative and thus I(u, v) ≥ 0 for all (u, v) ∈ DI . In addition since f, g, h
and k vanish if and only if z = 1, then G(t, s, r) = 0 if and only if s = tr.
Consequently, if I(u, v) = 0 then we have

∇u · ∇v = |∇u||∇v| and u|∇v| = v|∇u|
almost everywhere in Ω. This is equivalent to (u∇v − v∇u)2 = 0, which
implies that u = αv with α ∈ R

�
+. �

Theorem 3.3. The first eigenvalues λ of Eq. (1.3) are simple, i.e., if u and v
are two positive first eigenfunctions associated to λ, then u = v.
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Proof. By Proposition 3.2, we have u = αv. Inserting this into the equation
(1.3) implies that α = 1. �

3.3. Invertibility of the Operator −Δp − Δ

To simplify some notations, here we set X = W 1,p
0 (Ω) and its dual X� =

W−1,p′
(Ω), where 1

p + 1
p′ = 1.

For the proof of the following lemma, we refer to [19]:

Lemma 3.4. Let p > 2. Then there exist two positive constants c1, c2 such
that, for all x1, x2 ∈ R

n, we have the following:
(i) (x2 − x1) · (|x2|p−2x2 − |x1|p−2x1) ≥ c1|x2 − x1|p
(ii)

∣∣|x2|p−2x2 − |x1|p−2x1

∣∣ ≤ c2(|x2| + |x1|)p−2|x2 − x1|
Proposition 3.5. For p > 2, the operator −Δp−Δ is a global homeomorphism.

The proof is based on the previous Lemma 3.4.

Proof. Define the nonlinear operator A : X → X� by

〈Au, v〉 =
∫

Ω

∇u · ∇v dx +
∫

Ω

|∇u|p−2∇u · ∇v dx for all u, v ∈ X.

To show that −Δp − Δ is a homeomorphism, it is enough to show that
A is a continuous strongly monotone operator, (see [9, Corollary 2.5.10]).
For p > 2, for all u, v ∈ X, by (i), we get

〈Au − Av, u − v〉
=
∫

Ω

|∇(u − v)|2dx +
∫

Ω

(|∇u|p−2∇u − |∇v|p−2∇v
) · ∇(u − v) dx

≥
∫

Ω

|∇(u − v)|2dx + c1

∫
Ω

|∇(u − v)|pdx

≥ c1‖u − v‖p
1,p.

Thus A is a strongly monotone operator.
We claim that A is a continuous operator from X to X�. Indeed, assume

that un → u in X. We have to show that ‖Aun − Au‖X� → 0 as n →
∞. Indeed, using (ii) and Hölder’s inequality and the Sobolev embedding
theorem, one has

|〈Aun − Au,w〉|
≤
∫

Ω

∣∣|∇un|p−2∇un − |∇u|p−2∇u
∣∣ |∇w| dx +

∫
Ω

|∇(un − u)||∇w| dx

≤ c2

∫
Ω

(|∇un| + |∇u|)p−2 |∇(un − u)||∇w| dx +
∫

Ω

|∇(un − u)||∇w| dx

≤ c2

(∫
Ω

(|∇un| + |∇u|)p dx

)p−2/p(∫
Ω

|∇(un − u)|pdx

)1/p

×
(∫

Ω

|∇w|pdx

)1/p

+ c3‖un − u‖1,2‖w‖1,2

≤ c4 (‖un‖1,p + ‖u‖1,p)
p−2 ‖un − u‖1,p‖w‖1,p + c5‖un − u‖1,p‖w‖1,p.
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Thus ‖Aun − Au‖X� → 0, as n → +∞, and hence A is a homeomor-
phism. �

4. Bifurcation of Eigenvalues

In the next subsection we show that for Eq. (1.3) there is a branch of first
eigenvalues bifurcating from (λD

1 , 0) ∈ R
+ × W 1,p

0 (Ω).

4.1. Bifurcation from Zero: The Case p > 2
By Proposition 3.5, Eq. (1.3) is equivalent to

u = λ(−Δp − Δ)−1u for u ∈ W−1,p′
(Ω). (4.1)

We set
Sλ(u) = u − λ(−Δp − Δ)−1u, (4.2)

u∈L2(Ω) ⊂ W−1,p′
(Ω) and λ>0. By Σ={(λ, u) ∈ R

+ × W 1,p
0 (Ω)/ u �=

0 , Sλ(u) = 0}, we denote the set of nontrivial solutions of (4.1).
A bifurcation point for (4.1) is a number λ� ∈ R

+ such that (λ�, 0)
belongs to the closure of Σ. This is equivalent to say that, in any neighborhood
of (λ�, 0) in R

+ × W 1,p
0 (Ω), there exists a nontrivial solution of Sλ(u) = 0.

Our goal is to apply the Krasnoselski bifurcation theorem [see, [1]].

Theorem 4.1. (Krasnoselski, 1964)
Let X be a Banach space and let T ∈ C1(X,X) be a compact operator

such that T (0) = 0 and T ′(0) = 0. Moreover, let A ∈ L(X) also be compact.
Then every characteristic value λ∗ of A with odd (algebraic) multiplicity is a
bifurcation point for u = λAu + T (u).

We state our bifurcation result.

Theorem 4.2. Let p > 2. Then every eigenvalue λD
k with odd multiplicity is

a bifurcation point in R
+ × W 1,p

0 (Ω) of Sλ(u) = 0, in the sense that in any
neighbourhood of (λD

k , 0) in R
+ × W 1,p

0 (Ω) there exists a nontrivial solution
of Sλ(u) = 0.

Proof. We write the equation Sλ(u) = 0 as

u = λAu + Tλ(u),

where Au = (−Δ)−1u and Tλ(u) = [(−Δp − Δ)−1 − (−Δ)−1](λu), where we
consider

(−Δp − Δ)−1 : L2(Ω) ⊂ W−1,p′
(Ω) → W 1,p

0 (Ω) ⊂⊂ L2(Ω)

and (−Δ)−1 : L2(Ω) ⊂ W−1,2(Ω) → W 1,2
0 (Ω) ⊂⊂ L2(Ω).

For p > 2, the mapping

(−Δp − Δ)−1 − (−Δ)−1 : L2(Ω) ⊂ W−1,p′
(Ω) → W 1,p

0 (Ω) ⊂⊂ L2(Ω)

is compact thanks to Rellich–Kondrachov theorem. We clearly have A ∈
L(L2(Ω)) and Tλ(0) = 0. Now we have to show that
(1) Tλ ∈ C1.
(2) T ′

λ(0) = 0.
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In order to show (1) and (2), it suffices to show that

(a) −Δp − Δ : W 1,p
0 (Ω) → W−1,p′

(Ω) is continuously differentiable in a
neighborhood u ∈ W 1,p

0 (Ω).
(b) (−Δp − Δ)−1 is a continuous inverse operator.

According to Proposition 3.5, −Δp − Δ is a homeomorphism; hence
(−Δp − Δ)−1 is continuous and this shows (b). We also recall that in section
3.2, we have shown that λD

1 is simple.
Let us show (a). We claim that −Δp : W 1,p

0 (Ω) → W−1,p′
(Ω) is Gâteaux

differentiable. Indeed, for ϕ ∈ W 1,p
0 (Ω) we have

〈−Δp(u + δv), ϕ〉 − 〈−Δpu, ϕ〉
=
〈|∇(u + δv)|p−2∇(u + δv),∇ϕ

〉− 〈|∇u|p−2∇u,∇ϕ
〉

=
〈(|∇(u + δv)|2) p−2

2 ∇(u + δv),∇ϕ〉 − 〈|∇u|p−2∇u,∇ϕ

〉

=
〈(|∇u|2 + 2δ 〈∇u,∇v〉 + δ2|∇v|2) p−2

2 ∇(u + δv),∇ϕ

〉

−〈|∇u|p−2∇u,∇ϕ〉
= 〈[|∇u|p−2 + (p − 2)|∇u|2( p−2

2 −1)δ〈∇u,∇v〉
+O(δ2)]∇(u + δv),∇ϕ〉 − 〈|∇u|p−2∇u,∇ϕ〉

= 〈[|∇u|p−2 + (p − 2)|∇u|p−4δ〈∇u,∇v〉
+O(δ2)]∇(u + δv),∇ϕ〉
−〈|∇u|p−2∇u,∇ϕ〉

= (p − 2)δ|∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉
+δ〈|∇u|p−2∇v,∇ϕ〉 + O(δ2)

= δ[(p − 2)|∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉
+〈|∇u|p−2∇v,∇ϕ〉 + O(δ)].

Define

〈B(u)v, ϕ〉 = (p − 2)|∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉 + 〈|∇u|p−2∇v,∇ϕ〉
and let (un)n≥0 ⊂ W 1,p

0 (Ω). Assume that un → u, as n → ∞ in W 1,p
0 (Ω).

We have

〈B(un)v − B(u)v, ϕ〉
= (p − 2)

[|∇un|p−4〈∇un,∇v〉〈∇un,∇ϕ〉 − |∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉]
+〈|∇un|p−2∇v,∇ϕ〉 − 〈|∇u|p−2∇v,∇ϕ〉.

Therefore,

|〈B(un)v − B(u)v, ϕ〉|
≤ (p − 2)

∣∣|∇un|p−4〈∇un,∇v〉〈∇un,∇ϕ〉 − |∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉∣∣
+
∣∣|∇un|p−2 − |∇u|p−2

∣∣ |〈∇v,∇ϕ〉|.
By assumption, we can assume that, up to subsequences,
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(∗) ∇un → ∇u in (Lp(Ω))N as n → ∞ and
(∗∗) ∇un(x) → ∇u(x) almost everywhere as n → ∞.

Then |∇un|p−4〈∇un,∇v〉〈∇un,∇ϕ〉 → |∇u|p−4〈∇u,∇v〉〈∇u,∇ϕ〉 as
n → ∞ and consequently 〈B(un)v, ϕ〉 → 〈B(u)v, ϕ〉as n → ∞. Thus, we find
that −Δp−Δ ∈ C1 and thanks to the Inverse function theorem (−Δp−Δ)−1

is differentiable in a neighborhood of u ∈ W 1,p
0 (Ω). Therefore, according to

the Krasnoselski bifurcation Theorem, we obtain that λD
k is a bifurcation

point at zero. �

4.2. Bifurcation from Infinity: The Case 1 < p < 2

We recall the nonlinear eigenvalue problem we are investigating{−Δpu − Δu = λu in Ω,
u = 0 on ∂Ω.

(4.3)

Under a solution of (4.3) (for 1 < p < 2), we understand a pair (λ, u) ∈
R

+
� × W 1,2

0 (Ω) satisfying the integral equality∫
Ω

|∇u|p−2∇u ·∇ϕ dx+
∫

Ω

∇u ·∇ϕ dx = λ

∫
Ω

uϕ dx for everyϕ ∈ W 1,2
0 (Ω).

(4.4)

Definition 4.3. Let λ ∈ R. We say that the pair (λ,∞) is a bifurcation point
from infinity for problem (4.3) if there exists a sequence of pairs
{(λn, un)}∞

n=1 ⊂ R × W 1,p
0 (Ω) such that Eq. (4.4) holds and (λn, ‖un‖1,2) →

(λ,∞).

We now state the main theorem concerning the bifurcation from infinity.

Theorem 4.4. The pair (λD
1 ,∞) is a bifurcation point from infinity for the

problem (4.3).

For u ∈ W 1,2
0 (Ω), u �= 0, we set v = u/‖u‖2− 1

2p
1,2 . We have ‖v‖1,2 =

1

‖u‖1− 1
2 p

1,2

and

|∇v|p−2∇v =
1

‖u‖(2− 1
2p)(p−1)

1,2

|∇u|p−2∇u.

Introducing this change of variable in (4.4), we find that

‖u‖(2− 1
2p)(p−2)

1,2

∫
Ω

|∇v|p−2∇v · ∇ϕ dx +
∫

Ω

∇v · ∇ϕ dx

= λ

∫
Ω

vϕ dx for everyϕ ∈ W 1,2
0 (Ω). (4.5)

But, on the other hand, we have

‖v‖p−4
1,2 =

1

‖u‖(1− 1
2p)(p−4)

1,2

=
1

‖u‖(2− 1
2p)(p−2)

1,2

.
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Consequently, it follows that Eq. (4.5) is equivalent to

‖v‖4−p
1,2

∫
Ω

|∇v|p−2∇v ·∇ϕ dx+

∫
Ω

∇v ·∇ϕ dx = λ

∫
Ω

vϕ dx for every ϕ ∈ W 1,2
0 (Ω).

(4.6)
This leads to the following nonlinear eigenvalue problem (for 1 < p < 2):

{−‖v‖4−p
1,2 Δpv − Δv = λv in Ω,

v = 0 on ∂Ω.
(4.7)

The proof of Theorem 4.4 follows immediately from the following re-
mark, and the proof that (λD

1 , 0) is a bifurcation of (4.7).

Remark 4.5. With this transformation, we have that the pair (λD
1 ,∞) is a

bifurcation point for the problem (4.3) if and only if the pair (λD
1 , 0) is a

bifurcation point for the problem (4.7).

Let us consider a small ball Br(0) := { w ∈ W 1,2
0 (Ω)/ ‖w‖1,2 < r },

and consider the operator

T := −‖ · ‖4−p
1,2 Δp − Δ : W 1,2

0 (Ω) → W−1,2(Ω).

Proposition 4.6. Let 1 < p < 2. There exists r > 0 such that the mapping
T : Br(0) ⊂ W 1,2

0 (Ω) → W−1,2(Ω) is invertible, with a continuous
inverse.

Proof. In order to prove that the operator T is invertible with a continuous
inverse, we again rely on [9, Corollary 2.5.10]. We show that there exists δ > 0
such that

〈T (u) − T (v), u − v〉 ≥ δ‖u − v‖2
1,2, for u, v ∈ Br(0) ⊂ W 1,2

0 (Ω)

with r > 0 sufficiently small.
Indeed, using that −Δp is strongly monotone on W 1,p

0 (Ω) on the one
hand and the Hölder inequality on the other hand, we have

〈T (u) − T (v), u − v〉
= ‖∇u − ∇v‖2

2 +
(
‖u‖4−p

1,2 (−Δpu) − ‖v‖4−p
1,2 (−Δpv), u − v

)

= ‖u − v‖2
1,2 + ‖u‖4−p

1,2 ((−Δpu) − (−Δpv), u − v)

+
(
‖u‖4−p

1,2 − ‖v‖4−p
1,2

)
(−Δpv, u − v)

≥ ‖u − v‖2
1,2 −

∣∣∣‖u‖4−p
1,2 − ‖v‖4−p

1,2

∣∣∣ ‖∇v‖p−1
p ‖∇(u − v)‖p

≥ ‖u − v‖2
1,2 −

∣∣∣‖u‖4−p
1,2 − ‖v‖4−p

1,2

∣∣∣C‖v‖p−1
1,2 ‖u − v‖1,2. (4.8)



MJOM Nonlinear Eigenvalue Problems and Bifurcation Page 21 of 31 99

Now, we obtain by the Mean Value Theorem that there exists θ ∈ [0, 1]
such that

∣∣‖u‖4−p
1,2 − ‖v‖4−p

1,2

∣∣ =

∣∣∣∣ d

dt

(‖u + t(v − u)‖2
1,2

)2− 1
2 p |t=θ(v − u)

∣∣∣∣
=

∣∣∣∣(2 − 1

2
p)
(‖u + θ(v − u)‖2

1,2

)1− 1
2 p

2 (u + θ(v − u), v − u)1,2

∣∣∣∣
≤ (4 − p)‖u + θ(v − u)‖2−p

1,2 ‖u + θ(v − u)‖1,2‖u − v‖1,2

= (4 − p)‖u + θ(v − u)‖3−p
1,2 ‖u − v‖1,2

≤ (4 − p) ((1 − θ)‖u‖1,2 + θ‖v‖1,2)
3−p ‖u − v‖1,2

≤ (4 − p)r3−p‖u − v‖1,2.

Hence, continuing with the estimate of Eq. (4.8), we get

〈T (u) − T (v), u − v〉 ≥ ‖u − v‖2
1,2

(
1 − (4 − p)r3−pCrp−1

)
= ‖u − v‖2

1,2

(
1 − C ′r2

)
,

and thus the claim, for r > 0 small enough.
Hence, the operator T is strongly monotone on Br(0) and it is contin-

uous, and hence the claim follows. �

Clearly the mappings

Tτ = −Δ − τ‖ · ‖γ
1,2Δp : Br(0) ⊂ W 1,2

0 (Ω) → W−1,2(Ω), 0 ≤ τ ≤ 1

are also local homeomorphisms for 1 < p < 2 with γ = 4 − p > 0. Consider
now the homotopy maps

H(τ, y) := (−τ‖ · ‖γ
1,2Δp − Δ)−1(y), y ∈ Tτ (Br(0)) ⊂ W−1,2(Ω).

Then we can find a ρ > 0 such that the ball

Bρ(0) ⊂
⋂

0≤τ≤1

Tτ (Br(0))

and

H(τ, ·) : Bρ(0) ∩ L2(Ω) �→ W 1,2
0 (Ω) ⊂⊂ L2(Ω)

are compact mappings. Set now

S̃λ(u) = u − λ
(−‖u‖γ

1,2Δp − Δ
)−1

u.

Notice that S̃λ is a compact perturbation of the identity in L2(Ω). We
have 0 /∈ H([0, 1]×∂Br(0)). So it makes sense to consider the Leray–Schauder
topological degree of H(τ, ·) on Br(0). And by the property of the invariance
by homotopy, one has

deg(H(0, ·), Br(0), 0) = deg (H(1, ·), Br(0), 0) . (4.9)

Theorem 4.7. The pair (λD
1 , 0) is a bifurcation point in R

+×L2(Ω) of S̃λ(u) =
0, for 1 < p < 2.
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Proof. Suppose by contradiction that (λD
1 , 0) is not a bifurcation for S̃λ.

Then, there exist δ0 > 0 such that for all r ∈ (0, δ0) and ε ∈ (0, δ0),

S̃λ(u) �= 0 ∀ |λD
1 − λ| ≤ ε, ∀ u ∈ L2(Ω), ‖u‖2 = r. (4.10)

Taking into account that (4.10) holds, it follows that it make sense to
consider the Leray–Schauder topological degree deg(S̃λ, Br(0), 0) of S̃λ on
Br(0).

We observe that(
I − (

λD
1 − ε

)
H(τ, ·)) |∂Br(0) �= 0 for τ ∈ [0, 1]. (4.11)

Proving (4.11) guarantee the well posedness of deg(I−(λD
1 ±ε)H(τ, ·), Br(0),

0) for any τ ∈ [0, 1].
Indeed, by contradiction suppose that there exists v ∈ ∂Br(0) ⊂ L2(Ω)

such that
v − (

λD
1 − ε

)
H(τ, v) = 0, for some τ ∈ [0, 1].

One concludes that then v ∈ W 1,2
0 (Ω), and then that

−Δv − τ‖v‖γ
1,2Δpv =

(
λD

1 − ε
)
v.

However, we get the contradiction,(
λD

1 − ε
) ‖v‖2

2 = ‖∇v‖2
2 + τ‖v‖γ

1,2‖∇v‖p
p ≥ ‖∇v‖2

2 ≥ λD
1 ‖v‖2

2.

By the contradiction assumption, we have

deg
(
I − (λD

1 + ε)H(1, ·), Br(0), 0
)

= deg
(
I − (λD

1 − ε)H(1, ·), Br(0), 0
)
.

(4.12)
By homotopy using (4.9), we have

deg
(
I − (λD

1 − ε)H(1, ·), Br(0), 0
)

= deg
(
I − (λD

1 − ε)H(0, ·), Br(0), 0
)

= deg
(
I−(λD

1 − ε)(−Δ)−1, Br(0), 0
)

= 1
(4.13)

Now, using (4.13) and (4.12), we find that

deg(I − (λD
1 + ε)H(1, ·), Br(0), 0) = deg(I − (λD

1 − ε)H(0, ·), Br(0), 0) = 1
(4.14)

Furthermore, since λD
1 is a simple eigenvalue of −Δ, it is well known

[see [1]] that

deg
(
I − (λD

1 + ε)(−Δ)−1, Br(0
)

, 0) = deg
(
I − (λD

1 + ε)H(0, ·), Br(0), 0
)

= −1

(4.15)
In order to get contradiction (to relation (4.14)), it is enough to show

that

deg
(
I − (λD

1 + ε)H(1, ·), Br(0
)
, 0) = deg

(
I − (λD

1 + ε)H(0, ·), Br(0), 0
)
,

(4.16)
r > 0 sufficiently small. We have to show that(

I − (λD
1 + ε)H(τ, ·)) |∂Br(0) �= 0 for τ ∈ [0, 1].
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Suppose by contradiction that there is rn → 0, τn ∈ [0, 1] and un ∈
∂Brn

(0) such that

un − (
λD

1 + ε
)
H (τn, un) = 0

or equivalently

− τn‖un‖γ
1,2Δpun − Δun =

(
λD

1 + ε
)
un. (4.17)

Dividing the Eq. (4.17) by ‖un‖1,2, we obtain

−τn‖un‖γ+p−1
1,2 Δp

(
un

‖un‖1,2

)
− Δ

(
un

‖un‖1,2

)
= (λD

1 + ε)
un

‖un‖1,2
,

and by setting vn = un

‖un‖1,2
, it follows that

− τn‖un‖γ+p−1
1,2 Δpvn − Δvn = (λD

1 + ε)vn. (4.18)

But since ‖vn‖1,2 = 1, we have vn ⇀ v in W 1,2
0 (Ω) and vn → v in L2(Ω).

Furthermore, the first term in the left-hand side of Eq. (4.18) tends to zero in
W−1,p′

(Ω) as rn → 0 and hence in W−1,2(Ω). Equation (4.17) then implies
that vn → v strongly in W 1,2

0 (Ω) since −Δ : W 1,2
0 (Ω) → W−1,2(Ω) is a

homeomorphism and thus v with ‖v‖1,2 = 1 solves −Δv = (λD
1 + ε)v, which

is impossible because λD
1 + ε is not the first eigenvalue of −Δ on W 1,2

0 (Ω) for
ε > 0.

Therefore, by homotopy it follows that

deg
(
I − (λD

1 + ε)H(1, ·), Br(0
)
, 0) = deg

(
I − (λD

1 + ε)H(0, ·), Br(0), 0
)
.

Now, thanks to (4.15), we find that

deg
(
I − (λD

1 + ε)H(1, ·), Br(0), 0
)

= −1,

which contradicts Eq. (4.14). �

Theorem 4.8. The pair (λD
k , 0) (k > 1) is a bifurcation point of S̃λ(u) = 0,

for 1 < p < 2 if λD
k is of odd multiplicity.

Proof. Suppose by contradiction that (λD
k , 0) is not a bifurcation for S̃λ.

Then, there exist δ0 > 0 such that for all r ∈ (0, δ0) and ε ∈ (0, δ0),

S̃λ(u) �= 0 ∀ |λD
k − λ| ≤ ε, ∀ u ∈ L2(Ω), ‖u‖2 = r. (4.19)

Taking into account that (4.19) holds, it follows that it make sense to consider
the Leray–Schauder topological degree deg(S̃λ, Br(0), 0) of S̃λ on Br(0).

We show that(
I − (

λD
k − ε

)
H(τ, ·)) |∂Br(0) �= 0 for τ ∈ [0, 1]. (4.20)

Proving (4.20) garantees the well posedness of deg(I − (λD
k ± ε)H(τ, ·),

Br(0), 0) for any τ ∈ [0, 1]. Indeed, consider the projections P− and P+ onto
the spaces span{e1, . . . , ek−1} and span{ek, ek+1, . . . }, respectively,
where e1 . . . , ek, ek+1, . . . denote the eigenfunctions associated with the Dirich-
let problem (1.1).
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Suppose by contradiction that relation (4.20) does not hold. Then there
exists v ∈ ∂Br(0) ⊂ L2(Ω) such that v − (λD

k − ε)H(τ, v) = 0, for some
τ ∈ [0, 1]. This is equivalent of having

− Δv − (
λD

k − ε
)
v = τ‖v‖γ

1,2Δpv. (4.21)

Replacing v by P+v + P−v, and multiplying equation (4.21) by P+v −
P−v in the both sides, we obtain〈

[−Δ − (λD
k − ε)](P+v + P−v), P+v − P−v

〉
= τ‖P+v + P−v‖γ

1,2

〈
Δp[P+v + P−v], P+v − P−v

〉
.

�
− [‖∇P−v‖2

2 − (λD
k − ε)‖P−v‖2

2

]
+‖∇P+v‖2

2 − (λD
k − ε)‖P+v‖2

2 = τ‖P+v + P−v‖γ
1,2

×〈Δp[P+v + P−v], P+v − P−v〉.
But 〈

Δp[P+v + P−v], P+v − P−v
〉

= −
∫

Ω

∣∣∇(P+v + P−v)
∣∣p−2 ∇(P+v + P−v) · ∇ (

P+v − P−v
)

dx,

and using the Hölder inequality, the embedding W 1,2
0 (Ω) ⊂ W 1,p

0 (Ω) and the
fact that P+v and P−v do not vanish simultaneously, there is some positive
constant C ′ > 0 such that ‖P+v − P−v‖1,2 ≤ C ′(‖P+v‖2

1,2 + ‖P−v‖2
1,2) =

C ′‖P+v − P−v‖2
1,2, since (P+v, P−v)1,2 = 0, we have∣∣〈Δp[P+v + P−v], P+v − P−v〉∣∣
≤ ‖P+v + P−v‖p−1

1,p ‖P+v − P−v‖1,p

≤ C ′‖P+v + P−v‖p−1
1,2 ‖P+v − P−v‖2

1,2

≤ C ′‖P+v + P−v‖p+1
1,2 , since ‖P+v − P−v‖2

1,2

= ‖P+v + P−v‖2
1,2.

On the other hand, thanks to the Poincaré inequality as well as the
variational characterization of eigenvalues we find

− [‖∇P−v‖2
2 − (λD

k − ε)‖P−v‖2
2

] ≥ 0

and

‖∇P+v‖2
2 − (λD

k − ε)‖P+v‖2
2 ≥ 0,

we can bound from below these two inequalities together by ‖∇P+v‖2
2 +

‖∇P−v‖2
2.

Finally, we have

‖v‖2
1,2 = ‖∇P+v‖2

2 + ‖∇P−v‖2
2 ≤ τC ′‖P+v + P−v‖γ+p+1

1,2 , with γ = 4 − p,

�
‖v‖2

1,2 ≤ C ′′‖v‖γ+p+1
1,2 ⇔ 1 ≤ C ′′r3 → 0,

for r taken small enough. This shows that (4.20) holds.
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By the contradiction assumption, we have

deg
(
I − (λD

k + ε)H(1, ·), Br(0), 0
)

= deg
(
I − (λD

k − ε)H(1, ·), Br(0), 0
)
.

(4.22)
By homotopy using (4.20), we have

deg
(
I − (

λD
k − ε

)
H(1, ·), Br(0), 0

)
= deg

(
I − (

λD
k − ε

)
H(0, ·), Br(0), 0

)
= deg

(
I − (λD

k − ε)(−Δ)−1, Br(0), 0
)

= (−1)β , (4.23)

where β is the sum of algebraic multiplicities of the eigenvalues λD
k − ε < λ.

Similarly, if β′ denotes the sum of the algebraic multiplicities of the charac-
teristic values of (−Δ)−1 such that λ > λD

k + ε, then

deg
(
I − (

λD
k + ε

)
H(1, ·), Br(0), 0

)
= (−1)β′

(4.24)

But since [λD
k −ε, λD

k +ε] contains only the eigenvalue λD
k , it follows that

β′ = β + α, where α denotes the algebraic multiplicity of λD
k . Consequently,

we have

deg
(
I − (

λD
k + ε

)
H(1, ·), Br(0), 0

)
= (−1)β+α

= (−1)α deg
(
I − (

λD
k + ε

)
H(1, ·), Br(0), 0

)
= −deg

(
I − (

λD
k + ε

)
H(1, ·), Br(0), 0

)
,

since λD
k is with odd multiplicity. This contradicts (4.22). �

5. Multiple Solutions

In this section we prove multiplicity results by distinguishing again the two
cases 1 < p < 2 and p > 2. We recall the following definition which will
be used in this section. Let X be a Banach space and Ω ⊂ X an open
bounded domain which is symmetric with respect to the origin of X, that is,
u ∈ Ω ⇒ −u ∈ Ω. Let Γ be the class of all the symmetric subsets A ⊆ X\{0}
which are closed in X\{0}.

Definition 5.1. (Krasnoselski genus) Let A ∈ Γ. The genus of A is the least
integer p ∈ N

∗ such that there exists Φ : A → R
p continuous, odd and such

that Φ(x) �= 0 for all x ∈ A. The genus of A is usually denoted by γ(A).

Theorem 5.2. Let 1 < p < 2 or 2 < p < ∞, and suppose that λ ∈ (λD
k , λD

k+1)
for any k ∈ N

∗. Then Eq. (1.3) has at least k pairs of nontrivial solutions.

Proof. Case 1: 1 < p < 2. In this case we will avail of [ [1], Proposition 10.8].
We consider the energy functional Iλ : W 1,2

0 (Ω)\{0} → R associated with the
problem (1.3) defined by

Iλ(u) =
2
p

∫
Ω

|∇u|p dx +
∫

Ω

|∇u|2 dx − λ

∫
Ω

u2 dx.
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The functional Iλ is not bounded from below on W 1,2
0 (Ω), so we consider

again the natural constraint set, the Nehari manifold on which we minimize
the functional Iλ. The Nehari manifold is given by

Nλ :=
{

u ∈ W 1,2
0 (Ω)\{0

}
: 〈I ′

λ(u), u〉 = 0}.

On Nλ, we have Iλ(u) = ( 2
p − 1)

∫
Ω

|∇u|p dx > 0. We clearly have that Iλ is

even and bounded from below on Nλ.

Now, let us show that every (PS) sequence for Iλ has a converging
subsequence on Nλ. Let (un)n be a (PS) sequence, i.e., |Iλ(un)| ≤ C, for
all n, for some C > 0 and I ′

λ(un) → 0 in W−1,2(Ω) as n → +∞. We first
show that the sequence (un)n is bounded on Nλ. Suppose by contradiction

that this is not true, then
∫

Ω

|∇un|2 dx → +∞ as n → +∞. Since Iλ(un) =

( 2
p − 1)

∫
Ω

|∇un|p dx we have
∫

Ω

|∇un|p dx ≤ c. On Nλ, we have

0 <

∫
Ω

|∇un|p dx = λ

∫
Ω

u2
n dx −

∫
Ω

|∇un|2 dx, (5.1)

and hence
∫

Ω

u2
n dx → +∞. Let vn = un

‖un‖2
; then

∫
Ω

|∇vn|2 dx ≤ λ and

hence vn is bounded in W 1,2
0 (Ω). Therefore, there exists v0 ∈ W 1,2

0 (Ω) such
that vn ⇀ v0 in W 1,2

0 (Ω) and vn → v0 in L2(Ω). Dividing (5.1) by ‖un‖p
2, we

have

λ

∫
Ω

u2
n dx −

∫
Ω

|∇un|2 dx

‖un‖p
2

=
∫

Ω

|∇vn|p dx → 0,

since λ

∫
Ω

u2
n dx−

∫
Ω

|∇un|2 dx = (
2
p
−1)−1Iλ(un), |Iλ(un)| ≤ C and ‖un‖p

2 →
+∞. Now, since vn ⇀ v0 in W 1,2

0 (Ω) ⊂ W 1,p
0 (Ω), we infer that

∫
Ω

|∇v0|p dx ≤ lim inf
n→+∞

∫
Ω

|∇vn|p dx = 0,

and consequently v0 = 0. So vn → 0 in L2(Ω) and this is a contradiction
since ‖vn‖2 = 1. So (un)n is bounded on Nλ.

Next, we show that un converges strongly to u in W 1,2
0 (Ω).

To do this, we will use the following vector inequality for 1 < p < 2

(|x2|p−2x2 − |x1|p−2x1

) · (x2 − x1) ≥ C ′ (|x2| + |x1|)p−2 |x2 − x1|2,

for all x1, x2 ∈ R
N and for some C ′ > 0, (see [19]).
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We have
∫

Ω

u2
n dx →

∫
Ω

u2 dx and since I ′
λ(un) → 0 in W−1,2(Ω),

un ⇀ u in W 1,2
0 (Ω), we also have I ′

λ(un)(un −u) → 0 and I ′
λ(u)(un −u) → 0

as n → +∞. On the other hand, one has

〈I ′
λ(un) − I ′

λ(u), un − u〉 = 2

[∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u
) · ∇(un − u) dx

]

+2

∫
Ω

|∇(un − u)|2 dx − 2λ

∫
Ω

|un − u|2 dx

≥ C′
∫

Ω

(|∇un| + |∇u|)p−2 |∇(un − u)|2 dx

+2

∫
Ω

|∇(un − u)|2 dx − 2λ

∫
Ω

|un − u|2 dx

≥ 2

∫
Ω

|∇(un − u)|2 dx − 2λ

∫
Ω

|un − u|2 dx

≥ ‖un − u‖2
1,2 − λ

∫
Ω

|un − u|2 dx.

Therefore, ‖un − u‖1,2 → 0 as n → +∞ and un converges strongly to u

in W 1,2
0 (Ω).
Let Σ′ = {A ⊂ Nλ : A closed and −A = A} and Γj = {A ∈ Σ′ : γ(A) ≥

j}, where γ(A) denotes the Krasnoselski’s genus. We show that Γj �= ∅.

Set Ej = span{ei, i = 1, . . . , j}, where ei are the eigenfunctions asso-
ciated with the problem (1.1). Let λ ∈ (λD

j , λD
j+1), and consider v ∈ Sj :=

{v ∈ Ej :
∫
Ω

|v|2 dx = 1}. Then set

ρ(v) =
[ ∫

Ω
|∇v|p dx

λ
∫
Ω

v2 dx − ∫
Ω

|∇v|2 dx

] 1
2−p

.

Then λ
∫
Ω

v2 dx − ∫
Ω

|∇v|2 dx ≥ λ
∫
Ω

v2 dx −
j∑

i=1

∫
Ω

λi|ei|2 dx ≥ (λ −
λj)

∫
Ω

|v|2 dx > 0. Hence, ρ(v)v ∈ Nλ, and then ρ(Sj) ∈ Σ′, and γ(ρ(Sj)) =
γ(Sj) = j for 1 ≤ j ≤ k, for any k ∈ N

∗.
It is then standard (see [1], Proposition 10.8) to conclude that

σλ,j = inf
γ(A)≥j

sup
u∈A

Iλ(u), 1 ≤ j ≤ k, for any k ∈ N
∗

yields k pairs of nontrivial critical points for Iλ, which gives rise to k nontrivial
solutions of problem (1.3).

Case 2: p > 2.
In this case, we will rely on the following theorem:

Theorem (Clark, [11]) .
Let X be a Banach space and G ∈ C1(X,R) satisfying the Palais–Smale
condition with G(0) = 0. Let Γk = { A ∈ Σ : γ(A) ≥ k } with Σ = { A ⊂
X ; A = −A and A closed }. If ck = infA∈Γk

supu∈A G(u) ∈ (−∞, 0), then
ck is a critical value.
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Let us consider the C1 energy functional Iλ : W 1,p
0 (Ω) → R defined as

Iλ(u) =
2
p

∫
Ω

|∇u|p dx +
∫

Ω

|∇u|2 dx − λ

∫
Ω

|u|2 dx.

We want to show that

− ∞ < σj = inf
{A∈Σ′,γ(A)≥j}

sup
u∈A

Iλ(u) (5.2)

is a critical point for Iλ, where Σ′ = {A ⊆ Sj}, where Sj = {v ∈ Ej :
∫
Ω

|v|2
dx = 1}.

We clearly have that Iλ(u) is an even functional for all u ∈ W 1,p
0 (Ω),

and also Iλ(u) is bounded from below on W 1,p
0 (Ω) since Iλ(u) ≥ C‖u‖p

1,p −
C ′‖u‖2

1,p.
We show that Iλ(u) satisfies the (PS) condition. Let {un} be a Palais–

Smale sequence, i.e., |Iλ(un)| ≤ M for all n, M > 0 and I ′
λ(un) → 0 in

W−1,p′
(Ω) as n → ∞. We first show that {un} is bounded in W 1,p

0 (Ω). We
have

M ≥ |C‖un‖p
1,p − C ′‖un‖2

1,p| ≥
(
C‖un‖p−2

1,p − C ′
)

‖un‖2
1,p,

and so {un} is bounded in W 1,p
0 (Ω).

Therefore, u ∈ W 1,p
0 (Ω) exists such that, up to subsequences that we

will denote by (un)n we have un ⇀ u in W 1,p
0 (Ω) and un → u in L2(Ω).

We will use the following inequality for v1, v2 ∈ R
N : there exists R > 0

such that

|v1 − v2|p ≤ R
(|v1|p−2v1 − |v2|p−2v2

)
(v1 − v2),

for p > 2 (see [19]). Then we obtain

〈I ′
λ(un) − I ′

λ(u), un − u〉 = 2

∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u
) · ∇(un − u) dx

+ 2

∫
Ω

|∇un − ∇u|2 dx

− 2λ

∫
Ω

|un − u|2 dx

≥ 2

R

∫
Ω

|∇un − ∇u|p dx

+ 2

∫
Ω

|∇un − ∇u|2 dx − 2λ

∫
Ω

|un − u|2 dx

≥ 2

R
‖un − u‖p

1,p − 2λ

∫
Ω

|un − u|2 dx.

Therefore, ‖un − u‖1,p → 0 as n → +∞, and so un converges to u in
W 1,p

0 (Ω).
Next, we show that there exists sets Aj of genus j = 1, . . . , k such that

sup
u∈Aj

Iλ(u) < 0.
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Consider Ej = span{ei, i = 1, . . . , j} and Sj = {v ∈ Ej :
∫
Ω

|v|2 dx =
1}. For any s ∈ (0, 1), we define the set Aj(s) := s(Sj ∩Ej) and so γ(Aj(s)) =
j for j = 1, . . . , k. We have, for any s ∈ (0, 1)

sup
u∈Aj

Iλ(u) = sup
v∈Sj∩Ej

Iλ(sv)

≤ sup
v∈Sj∩Ej

{
sp

p

∫
Ω

|∇v|pdx +
s2

2

∫
Ω

|∇v|2dx − λs2

2

∫
Ω

|v|2dx

}

≤ sup
v∈Sj∩Ej

{
sp

p

∫
Ω

|∇v|pdx +
s2

2
(λj − λ)

}
< 0

for s > 0 sufficiently small, since
∫

Ω

|∇v|p dx ≤ cj , where cj denotes some

positive constant.
Finally, we conclude that σλ,j (j = 1, . . . , k) are critical values thanks

to Clark’s Theorem. �
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[3] Anane, A.: Simplicité et isolation de la première valeur propre du p-laplacien
avec poids. C. R. Acad. Sci. Paris Sér. Math. 305(16), 725–728 (1987)

[4] Badiale, M., & Serra, E. (2010). Semilinear Elliptic Equations for Beginners:
Existence Results via the Variational Approach. Springer Science & Business
Media

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


99 Page 30 of 31 E. W. B. Zongo and B. Ruf MJOM

[5] Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space
dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration.
Mech. Anal. 154(4), 297–324 (2000)

[6] Bobkov, V., Tanaka, M.: On positive solutions for (p, q)-Laplace equations with
two parameters. Calc. Var. Partial. Differ. Equ. 54, 3277–330 (2015)

[7] Bobkov, V., Tanaka, M.: Remarks on minimizers for (p, q)-Laplace equations
with two parameters. Commun. Pure Appl. Anal. 17(3), 1219–1253 (2018)
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[20] Lindqvist, P.: Addendum: on the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0.
Proc. Am. Math. Soc 116, 583–584 (1992). (Proceedings of the Amer. Math.
Soc. 109(1990)157-164)

[21] Marano, S., Mosconi, S.: Some recent results on the Dirichlet problem for (p, q)-
Laplace equations. Discrete Contin. Dyn. Syst. Ser. S 11(2), 279–291 (2018)
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