Lower Lewis acidity boranes demonstrate greater tolerance to combinations of water/strong Brønsted bases than B(C6F5)3, this enables Si−H bond activation by a frustrated Lewis pair (FLP) mechanism to proceed in the presence of H2O/alkylamines. Specifically, BPh3has improved water tolerance in the presence of alkylamines as the Brønsted acidic adduct H2O–BPh3does not undergo irreversible deprotonation with aliphatic amines in contrast to H2O–B(C6F5)3. Therefore BPh3is a catalyst for the reductive amination of aldehydes and ketones with alkylamines using silanes as reductants. A range of amines inaccessible using B(C6F5)3as catalyst, were accessible by reductive amination catalysed by BPh3via an operationally simple methodology requiring no purification of BPh3or reagents/solvent. BPh3has a complementary reductive amination scope to B(C6F5)3with the former not an effective catalyst for the reductive amination of arylamines, while the latter is not an effective catalyst for the reductive amination of alkylamines. This disparity is due to the different pKavalues of the water–borane adducts and the greater susceptibility of BPh3species towards protodeboronation. An understanding of the deactivation processes occurring using B(C6F5)3and BPh3as reductive amination catalysts led to the identification of a third triarylborane, B(3,5-Cl2C6H3)3, that has a broader substrate scope being able to catalyse the reductive amination of both aryl and alkyl amines with carbonyls.

Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations / V. Fasano, M.J. Ingleson. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 23:9(2017 Feb), pp. 2217-2224. [10.1002/chem.201605466]

Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations

V. Fasano
Primo
;
2017

Abstract

Lower Lewis acidity boranes demonstrate greater tolerance to combinations of water/strong Brønsted bases than B(C6F5)3, this enables Si−H bond activation by a frustrated Lewis pair (FLP) mechanism to proceed in the presence of H2O/alkylamines. Specifically, BPh3has improved water tolerance in the presence of alkylamines as the Brønsted acidic adduct H2O–BPh3does not undergo irreversible deprotonation with aliphatic amines in contrast to H2O–B(C6F5)3. Therefore BPh3is a catalyst for the reductive amination of aldehydes and ketones with alkylamines using silanes as reductants. A range of amines inaccessible using B(C6F5)3as catalyst, were accessible by reductive amination catalysed by BPh3via an operationally simple methodology requiring no purification of BPh3or reagents/solvent. BPh3has a complementary reductive amination scope to B(C6F5)3with the former not an effective catalyst for the reductive amination of arylamines, while the latter is not an effective catalyst for the reductive amination of alkylamines. This disparity is due to the different pKavalues of the water–borane adducts and the greater susceptibility of BPh3species towards protodeboronation. An understanding of the deactivation processes occurring using B(C6F5)3and BPh3as reductive amination catalysts led to the identification of a third triarylborane, B(3,5-Cl2C6H3)3, that has a broader substrate scope being able to catalyse the reductive amination of both aryl and alkyl amines with carbonyls.
boron; frustrated Lewis pairs; protodeboronation; reductive amination; water tolerance
Settore CHIM/06 - Chimica Organica
feb-2017
15-dic-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
Chemistry A European J - 2016 - Fasano - Expanding Water Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/952296
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 59
social impact