The relative (to BEt3) hydride ion affinity (HIA) of a series of acridine borenium salts has been calculated, with some HIAs found to be similar to that for [Ph3C]+. The HIA at the acridine C9 position is controlled by both acridine and the boron substituents, the latter presumably affecting the strength of the B=N bond in the acridane-BY2 products from hydride transfer. Through a range of hydride abstraction benchmarking reactions against organic hydride donors the experimental HIA of [F5acr-BCat]+ (cat = catechol, F5acr = 1,2,3,4,7-pentafluoroacridine) has been confirmed to be extremely high and closely comparable to that of [Ph3C]+. The high HIA of [F5acr-BCat]+ enables H2 and alkene activation in a FLP with 2,6-di-tert-butylpyridine. Finally, the HIA of pyridine and quinoline borenium cations has been determined, with the HIA at boron in [PinB(amine)]+ (pin = pinacol, amine = pyridine or quinoline) found to be relatively low. This enabled the hydroboration of pyridine and quinoline by HBPin to be achieved through the addition of 5-10 mol % of bench-stable cationic carbon Lewis acids such as 2-phenyl-N,N-dimethylimidazolium salts.

N-Heterocycle-Ligated Borocations as Highly Tunable Carbon Lewis Acids / J.E. Radcliffe, J.J. Dunsford, J. Cid, V. Fasano, M.J. Ingleson. - In: ORGANOMETALLICS. - ISSN 0276-7333. - 36:24(2017 Dec 08), pp. 4952-4960. [10.1021/acs.organomet.7b00779]

N-Heterocycle-Ligated Borocations as Highly Tunable Carbon Lewis Acids

V. Fasano
Penultimo
;
2017

Abstract

The relative (to BEt3) hydride ion affinity (HIA) of a series of acridine borenium salts has been calculated, with some HIAs found to be similar to that for [Ph3C]+. The HIA at the acridine C9 position is controlled by both acridine and the boron substituents, the latter presumably affecting the strength of the B=N bond in the acridane-BY2 products from hydride transfer. Through a range of hydride abstraction benchmarking reactions against organic hydride donors the experimental HIA of [F5acr-BCat]+ (cat = catechol, F5acr = 1,2,3,4,7-pentafluoroacridine) has been confirmed to be extremely high and closely comparable to that of [Ph3C]+. The high HIA of [F5acr-BCat]+ enables H2 and alkene activation in a FLP with 2,6-di-tert-butylpyridine. Finally, the HIA of pyridine and quinoline borenium cations has been determined, with the HIA at boron in [PinB(amine)]+ (pin = pinacol, amine = pyridine or quinoline) found to be relatively low. This enabled the hydroboration of pyridine and quinoline by HBPin to be achieved through the addition of 5-10 mol % of bench-stable cationic carbon Lewis acids such as 2-phenyl-N,N-dimethylimidazolium salts.
Settore CHIM/06 - Chimica Organica
8-dic-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
acs.organomet.7b00779.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/952290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact