In contrast to the established dogma that B(C6F5)3 is irreversibly poisoned by excess H2O/amine (or imine) bases, B(C6F5)3 is actually a water-tolerant catalyst for the reductive amination of primary and secondary arylamines with aldehydes and ketones in "wet solvents" at raised temperatures and using only 1.2 equiv of Me2PhSiH as reductant. Arylamines/N-arylimines do not result in the irreversible deprotonation of H2O-B(C6F5)3, allowing sufficient B(C6F5)3 to be evolved at raised temperatures to effect catalytic reductions. Stronger Brønsted basic amines such as tBuNH2 (and derived imines) result in irreversible formation of [HO-B(C6F5)3]- from H2O-B(C6F5)3, precluding the formation of B(C6F5)3 at raised temperatures and thus preventing any imine reduction. A substrate scope exploration using 1 mol % nonpurified B(C6F5)3 and "wet solvents" demonstrates that this is an operationally simple and effective methodology for the production of secondary and tertiary arylamines in high yield, with imine reduction proceeding in preference to other possible reactions catalyzed by B(C6F5)3, including the dehydrosilylation of H2O and the reduction of carbonyl moieties (e.g., esters).

B(C6F5)3-Catalyzed Reductive Amination using Hydrosilanes / V. Fasano, J.E. Radcliffe, M.J. Ingleson. - In: ACS CATALYSIS. - ISSN 2155-5435. - 6:3(2016 Mar 04), pp. 1793-1798. [10.1021/acscatal.5b02896]

B(C6F5)3-Catalyzed Reductive Amination using Hydrosilanes

V. Fasano
Primo
;
2016

Abstract

In contrast to the established dogma that B(C6F5)3 is irreversibly poisoned by excess H2O/amine (or imine) bases, B(C6F5)3 is actually a water-tolerant catalyst for the reductive amination of primary and secondary arylamines with aldehydes and ketones in "wet solvents" at raised temperatures and using only 1.2 equiv of Me2PhSiH as reductant. Arylamines/N-arylimines do not result in the irreversible deprotonation of H2O-B(C6F5)3, allowing sufficient B(C6F5)3 to be evolved at raised temperatures to effect catalytic reductions. Stronger Brønsted basic amines such as tBuNH2 (and derived imines) result in irreversible formation of [HO-B(C6F5)3]- from H2O-B(C6F5)3, precluding the formation of B(C6F5)3 at raised temperatures and thus preventing any imine reduction. A substrate scope exploration using 1 mol % nonpurified B(C6F5)3 and "wet solvents" demonstrates that this is an operationally simple and effective methodology for the production of secondary and tertiary arylamines in high yield, with imine reduction proceeding in preference to other possible reactions catalyzed by B(C6F5)3, including the dehydrosilylation of H2O and the reduction of carbonyl moieties (e.g., esters).
"frustrated Lewis pairs"; amines; metal-free; reductive amination; water tolerance
Settore CHIM/06 - Chimica Organica
4-mar-2016
3-feb-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
acscatal.5b02896.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 745.39 kB
Formato Adobe PDF
745.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/952278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 98
social impact