The apricot species is characterized by a gametophytic self-incompatibility (GSI) system. While GSI is one of the most efficient mechanisms to prevent self-fertilization and increase genetic variability, it represents a limiting factor for fruit production in the orchards. Compatibility among apricot cultivars was usually assessed by either field pollination experiments or by histochemical evaluation of in vitro pollen tube growth. In apricots, self-compatibility is controlled by two unlinked loci, S and M, and associated to transposable element insertion within the coding sequence of SFB and ParM-7 genes, respectively. Self-compatibility has become a primary breeding goal in apricot breeding programmes, stimulating the development of a rapid and cost-effective marker assisted selection (MAS) approach to accelerate screening of self-compatible genotypes. In this work, we demonstrated the feasibility of a novel High Resolution Melting Analysis (HRMA) approach for the massive screening of self-compatible and self-incompatible genotypes for both S and M loci. The different genotypes were unambiguously recognized by HRMA, showing clearly distinguishable melting profiles. The assay was developed and tested in a panel of accessions and breeding selections with known self-compatibility reaction, demonstrating the potential usefulness of this approach to optimize and accelerate apricot breeding programmes.
Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.) / B.M. Orlando Marchesano, R. Chiozzotto, I. Baccichet, D. Bassi, M. Cirilli. - In: GENES. - ISSN 2073-4425. - 13:3(2022 Mar 20), pp. 548.1-548.10. [10.3390/genes13030548]
Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.)
B.M. Orlando MarchesanoPrimo
;I. Baccichet;D. Bassi;M. Cirilli
Ultimo
2022
Abstract
The apricot species is characterized by a gametophytic self-incompatibility (GSI) system. While GSI is one of the most efficient mechanisms to prevent self-fertilization and increase genetic variability, it represents a limiting factor for fruit production in the orchards. Compatibility among apricot cultivars was usually assessed by either field pollination experiments or by histochemical evaluation of in vitro pollen tube growth. In apricots, self-compatibility is controlled by two unlinked loci, S and M, and associated to transposable element insertion within the coding sequence of SFB and ParM-7 genes, respectively. Self-compatibility has become a primary breeding goal in apricot breeding programmes, stimulating the development of a rapid and cost-effective marker assisted selection (MAS) approach to accelerate screening of self-compatible genotypes. In this work, we demonstrated the feasibility of a novel High Resolution Melting Analysis (HRMA) approach for the massive screening of self-compatible and self-incompatible genotypes for both S and M loci. The different genotypes were unambiguously recognized by HRMA, showing clearly distinguishable melting profiles. The assay was developed and tested in a panel of accessions and breeding selections with known self-compatibility reaction, demonstrating the potential usefulness of this approach to optimize and accelerate apricot breeding programmes.File | Dimensione | Formato | |
---|---|---|---|
genes-13-00548-v3.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.