We face the issue of finding alternative paradigms for the resolution of generic Mixed Integer Programs (MIP), by considering the perspective option of general purpose solvers which switch to decomposition methods when pertinent. Currently, the main blocking factor in their design is the problem of automatic decomposition of MIPs, that is to produce good MIP decompositions algorithmically, looking only at the algebraic structure of the MIP instance. We propose to employ Dantzig–Wolfe reformulation and machine learning methods to obtain a fully data driven automatic decomposition framework. We also design strategies and introduce algorithmic techniques in order to make such a framework computationally effective. An extensive experimental analysis shows our framework to grant substantial improvements, in terms of both solutions quality and computing time, with respect to state-of-the-art automatic decomposition techniques. It also allows us to gain insights into the relative impact of different techniques. As a side product of our research, we provide a dataset of more than 31 thousand random decompositions of MIPLIB instances, with 121 features, including computations of their root node relaxation.

A data driven Dantzig–Wolfe decomposition framework / S. Basso, A. Ceselli. - In: MATHEMATICAL PROGRAMMING COMPUTATION. - ISSN 1867-2949. - (2022), pp. 1-42. [Epub ahead of print] [10.1007/s12532-022-00230-4]

A data driven Dantzig–Wolfe decomposition framework

S. Basso
Primo
;
A. Ceselli
Ultimo
2022

Abstract

We face the issue of finding alternative paradigms for the resolution of generic Mixed Integer Programs (MIP), by considering the perspective option of general purpose solvers which switch to decomposition methods when pertinent. Currently, the main blocking factor in their design is the problem of automatic decomposition of MIPs, that is to produce good MIP decompositions algorithmically, looking only at the algebraic structure of the MIP instance. We propose to employ Dantzig–Wolfe reformulation and machine learning methods to obtain a fully data driven automatic decomposition framework. We also design strategies and introduce algorithmic techniques in order to make such a framework computationally effective. An extensive experimental analysis shows our framework to grant substantial improvements, in terms of both solutions quality and computing time, with respect to state-of-the-art automatic decomposition techniques. It also allows us to gain insights into the relative impact of different techniques. As a side product of our research, we provide a dataset of more than 31 thousand random decompositions of MIPLIB instances, with 121 features, including computations of their root node relaxation.
Settore INF/01 - Informatica
Settore MAT/09 - Ricerca Operativa
   Piano di Sostegno alla Ricerca 2015-2017 - Linea 2 "Dotazione annuale per attività istituzionali" (anno 2020)
   UNIVERSITA' DEGLI STUDI DI MILANO
2022
2-nov-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
s12532-022-00230-4.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/946739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact