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Abstract
We face the issue of finding alternative paradigms for the resolution of generic Mixed
Integer Programs (MIP), by considering the perspective option of general purpose
solvers which switch to decomposition methods when pertinent. Currently, the main
blocking factor in their design is the problem of automatic decomposition ofMIPs, that
is to produce good MIP decompositions algorithmically, looking only at the algebraic
structure of the MIP instance. We propose to employ Dantzig–Wolfe reformulation
and machine learning methods to obtain a fully data driven automatic decomposition
framework. We also design strategies and introduce algorithmic techniques in order to
make such a framework computationally effective. An extensive experimental analysis
shows our framework to grant substantial improvements, in terms of both solutions
quality and computing time, with respect to state-of-the-art automatic decomposition
techniques. It also allows us to gain insights into the relative impact of different
techniques. As a side product of our research, we provide a dataset of more than 31
thousand random decompositions of MIPLIB instances, with 121 features, including
computations of their root node relaxation.

1 Introduction

Decision support systems have been widely adopted in industry, government and also
academia. During the last decades, their evolution has been greatly impacted by the
explosive rise of Big Data, as the availability of more data triggered the need of
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quantitative support for more complex decisions. Organizations that once relied only
on ad-hoc systems and custom algorithms, now favor continuous delivery, integration
and modularity principles.

Standing on huge theoretical, algorithmic and software engineering research efforts
from our community, general purpose optimization solvers perfectly suit these needs.
They offer full modeling flexibility and grant computational effectiveness, which is
improving exponentially over the years [1]. State-of-the-art is built by commercial
packages [2–4] and academic ones [5] alike with a common feature: to exploit con-
tinuous relaxations, cutting planes and branch-and-bound as an overall framework.

However, on a minority but well noticeable share of problems, such a paradigm
appears inappropriate. It is the case for instance of vehicle routing, crew schedul-
ing, cutting stock, facility location, generalized assignment, and many others, where
decomposition techniques [6] yield often computational methods whose behaviour
strongly outperforms that of generic branch-and-cut.

Additionally, there is a steady trend for computation offloading. Cloud storage and
computing resources become increasingly affordable, and more and more computing
services are being offered directly as applications on cloud platforms [7]. One driving
factor is flexibility: fine resource provisioning can be performed by need, exploiting
several smaller virtual units rather than few powerful ones. Data size and scalability,
when distributed storage and concurrent computing units are available, are known
to be an issue for generic branch-and-cut methods, while decomposition approaches
naturally fit [8].

These reasons have motivated scholars in the search for paradigms combining the
flexibility of general purpose solvers, which can be used and integrated as black boxes
once data and models are given as input, with the computational effectiveness of
decomposition techniques, conceiving decomposition-based general purpose solvers.
While currently branch-and-cut based solvers on single workstations are orders of
magnitude faster than decomposition based ones, except on a minority of problems, it
is tempting to expect that the latter could overtake the former even on instances with
no specific structure, when running on massively concurrent platforms.

We remark that the normal working condition of general purpose solvers is to
get a generic Mixed Integer programming Problem (MIP) as input and optimize it,
without additional knowledge of the combinatorial structure of the problem it encodes.
This is clashing with the common practice for decomposition methods, where good
decomposition patterns must be given to the algorithm by a human mathematical
programming expert.

Therefore, a first research line considers the option to enrich input with a further
element: a description of the decomposition to apply. Successful attempts include [9,
10], and more recently [11, 12]. The state-of-the-art is currently GCG [13], distributed
with the SCIP framework [5]. It relies on Dantzig–Wolfe decomposition and fully
generic column generation.

A second line of research attempts to relief the general purpose solver user from
the explicit choice of a decomposition scheme, looking for a suitable one either on the
basis of model metadata [14, 15], like annotations on the type of constraints which
are encoded, or by the explicit search for specific structures in it (e.g. partitioning
constraints, network flows, temporal layers) via detectors [13].
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A data driven Dantzig–Wolfe decomposition framework 155

The most ambitious task is however that of automatic decomposition of MIPs. The
working condition of general purpose solvers is kept: only MIP models and data are
required to the user. Decomposition schemes are found by pure algorithmic detectors.
They solve side combinatorial problems on so-called static properties of the MIP, that
is without actually optimizing it. Such a research question is known in the literature as
automatic decomposition for MIPs. Either heuristics [16, 17] or exact approaches [18]
have been investigated. The overall GCG package [13] includes also state-of-the-art
algorithmic detectors, to be activated as an option.

In particular, the authors of [17] provide an unexpected but fundamental result:
algorithmic detectors and generic decomposition based solvers can experimentally
outperform commercial ones (in their case [2]) not only on selected problems having
a clear decomposable structure, but also on a subset of generic MIPs from theMIPLIB
[19]. On average, however, computational results are mixed. As shown in [20], issues
preventing further improvement seem to be deep in the choice of decomposition fea-
tures that algorithmic detectors consider in their search process.
Preliminary investigations. In two preparatory workshop papers [21, 22] we have
experimented the potential of machine learning tools in this context. We have mainly
focused on two very specific tasks. First, from a given set of genericMIP instances and
a set of decompositions produced for them by a randomized greedy algorithm, whose
relaxation at the root node is actually computed by column generation, we trained
regression and classification models. We found them to be able to predict bound and
computing time for other random decompositions over the same set of MIP instances,
or limited perturbations of them [21]. Second, we used these models for choosing how
to improve decompositions by simple local changes [22]. We found them effective.

Indeed, other researchers have successfully tried machine learning in this context,
producing complementary results on the question whether it is possible to filter which
MIP instances might benefit from a decomposition approach in place of branch-and-
cut, and which algorithmic detector is best suited [23].

Even if our preliminary investigations showed data driven methods to be promising
in specific tasks, the results of [21, 22] are not directly applicable as a full compu-
tational tool. In detail, [21] shows how to rank decompositions in terms of distance
from the Pareto front on the space of bound and computing time, but the problem of
actually generating and selecting a specific decomposition of good rank in an overall
optimization framework is only sketched. Neither the results of [22] are sufficient to be
directly integrated in an overall framework, the main drawback being the computing
time: the algorithms of [22] might take as long as the optimization phase itself. Further
integration issues are not discussed, such aswhich combinations of data drivenmodels,
training techniques, decomposition generation and improvement methods work well
together. Furthermore, only indirect computational evidence is provided: experiments
are limited to the root nodes of a branch-and-price tree, testing is mostly limited to
perturbations of training MIP instances, and comparisons with existing methods is
limited to a specific use of GCG.

In this paper we fill the gap between the concepts of [21, 22] and their actual use
in a full decomposition-based MIP resolution framework, proving its effectiveness
in realistic contexts. We also describe and share a library of more than 31 thousands
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decompositions of MIPLIB instances, generated by a randomized greedy algorithm
and scored by their root node computation.

In detail, we first formalize the theoretical framework we employ and we elabo-
rate on results from the literature to provide the overall background needed to our
framework (Sect. 2). We also detail which results come from our preliminary findings.
Then,we propose an overall architecture, we discuss the design of itsmain components
and the algorithmic engineering steps needed to obtain an effective implementation
(Sect. 3). Finally, we carry on an empirical statistical analysis: we describe our exper-
imental setup and the datasets we consider, we report on both preliminary results and
parameter fine tuning and full MIP optimization experiments (Sect. 4). We conclude
by discussing some perspectives (Sect. 5).

2 Background

From a methodological point of view, our framework relies on two pillars: mathemat-
ical programming and machine learning. Indeed their integration is a recent and lively
research field [24–26].

We formalize the problem and our approach by means of mathematical program-
ming (Sect. 2.1), and link it to the machine learning models we employ (Sect. 2.2).

2.1 Mathematical programmingmodels and notation

Let us consider the following formulation for a fully generic Integer Linear Program
(ILP):

(P) min
∑

j∈J

c j x j + dy

s.t.
∑

j∈J

A j x j + Dy ≥ a (1)

B j x j + E j y ≥ b j ∀ j ∈ J (2)

x j ∈ Z
n j
+ ∀ j ∈ J (3)

y ∈ Z
m+ (4)

where c j , A j , a, B j , b j , d, D, E j are rational data, x j are vectors of n j integer
variables each, and y is a vector of m integer variables. We remark that formulation
(P) readily extends to Mixed integer Linear Programs (MIP) by dropping a subset of
integrality constraints, although we omit this case to avoid notation overload.

A Linear Programming (LP) relaxation is obtained by replacing (3) and (4) with

x j ∈ R
n j
+ ∀ j ∈ J , y ∈ R

m+
That however often yields weak dual bounds. The fundamental intuition allowing to
successfully apply Dantzig Wolfe Decomposition (DWD) in this setting is in fact to
consider the sets, for each j ∈ J
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θ j =
{
(x, y)|B j x + E j y ≥ b j , x ∈ Z

n j
+ , y ∈ Z

m+
}

arising from (2), (3) and (4). From a geometric point of view, since (2) are linear, each
θ j induces a polyhedron, whose boundary is defined by a set S j of extreme points,
and a set R j of extreme rays. The latter indicate directions in which the polyhedron
induced by θ j is unbounded, if any. Each θ j can therefore be replaced in (P) by the
convex hull defined by S j and R j , which we denote as conv{θ j }. We can finally
obtain a relaxation for (P) by replacing (3) with x j ∈ R

n j
+ for each j ∈ J and (4) with

y ∈ R
m+:

min
∑

j∈J

c j x j + dy

s.t.
∑

j∈J

A j x j + Dy ≥ a (5)

(x j , y j ) ∈ conv{θ j } ∀ j ∈ J

y j = y ∀ j ∈ J

x j ∈ R
n j
+ ∀ j ∈ J

y ∈ R
m+

y, y j ∈ R
m+ ∀ j ∈ J (6)

By an inner representation principle, conditions (6) can be enforced by imposing x j

and y j variables to be obtained as a linear combination of elements (x j
k , y j

k ) ∈ S j and

(x j
k , y j

k ) ∈ R j

(
x j , y j

)
=

∑

k∈� j

(
x j
k , y j

k

)
z jk +

∑

k∈χ j

(
x j
k , y j

k

)
w

j
k

where each � j is the set of indices of elements in S j , each χ j is the set of indices of
elements in R j ,

∑
k∈� j z

j
k = 1 for each j ∈ J , each z jk ∈ R+ and each w

j
k ∈ R+.

That is, our relaxation of (P) is remapped into the following so called explicit extended
form:

(Q) min
∑

j∈J

c j x j + dy

s.t.
∑

j∈J

A j x j + Dy ≥ a

(x j , y j ) =
∑

k∈� j

(x j
k , y j

k )z jk +
∑

k∈χ j

(x j
k , y j

k )w
j
k ∀ j ∈ J

∑

k∈� j

z jk = 1 ∀ j ∈ J

y j = y ∀ j ∈ J

x j ∈ R
n j
+ ∀ j ∈ J
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y ∈ R
m+, y j ∈ R

m+ ∀ j ∈ J

0 ≤ z jk ≤ 1 ∀ j ∈ J ∀k ∈ � j

0 ≤ w
j
k ∀ j ∈ J ∀k ∈ χ j (7)

Vectors x j and y j can then be removed by projection, exploiting constraints (7).
When appliedwisely, such a relaxation can bemuch stronger than a plain continuous

relaxation, thanks to the so called convexification of the set of constraints (2). It is
actually as strong as a cutting plane approach, in which all the facets of the region
described by constraints (2) (3) and (4) are generated.

From a computational point of view the extended form (Q) has one additional
column for each extreme point inS j and each extreme ray inR j , that are combinatorial
in number. It is therefore common to pair DWD with column generation techniques
[27] to implicitly handle the set of z jk andw

j
k variables. Column generation is currently

a very well understood technique, which is also known to scale very well as the amount
of computing resources increases [8]. In fact DWD with column generation proves
successful as bounding procedure inmany branch-and-bound algorithms [6]. Effective
computing frameworks have also been developed, which take MIPs formulated as (P)
and fully optimize them by column generation and branch-and-bound [13].

A fundamental observation is therefore the following: any MIP can be written
as (P), whenever an arbitrary partitioning of its constraints is made, defining which
constraints belong to (1) and which belong to (2) for each j ∈ J . In fact, such a choice
induces a corresponding partitioning of the MIP variables in the vectors x j , those
appearing only in constraints of family (2) whose index block is j . Those variables
y appearing in more than a single block j ∈ J build an additional vertical border
of linking variables. Those constraints in which variables from multiple x j vectors
appear build an additional horizontal border of linking constraints.

Intuitively, after proper rearrangement, the partitioning is defining a block diagonal
structure in the constraint matrix: once constraints (1) and variables y are removed, the
MIP disaggregates into an independent subproblem for each j ∈ J . We therefore refer
to such a partitioning, and with an abuse of terminology also to the block structure
of constraints (2) induced by such a choice, as a decomposition pattern. We finally
formalize the following.
Def. Automatic Decomposition ofMIP.Given an arbitrary algebraic representation of a
MIP, rewrite it as (P) by finding a suitable decomposition pattern, that is a partitioning
of its constraints into a horizontal border and a set of blocks identified by J , which is
also inducing a partitioning of its variables into vectors y and x j .

Among the combinatorially many possible decompositions of a MIP, we are
interested in those maximizing some quality measure, the ultimate one being the
computational effort it takes to solve the MIP by exploiting it.
Def. A static feature of a MIP [23] is any numeric value which can be computed from
its algebraic formulation only, without actually optimizing the MIP.
Def. A static feature of a decomposition is any numeric value which can be computed
from the algebraic formulation of the MIP after the definition of the set J and the
corresponding partitioning (that is, from data c j , A j , a, B j , b j , d, D, E j ), without
actually optimizing the MIP.
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A data driven Dantzig–Wolfe decomposition framework 159

That is, by dynamic features we indicate all the remaining ones, and in particular
those requiring an optimization process to be evaluated. We remark that currently,
according to these definitions the ultimate measure of decomposition quality cannot
be encoded as a static label.

2.2 Computational methods

The issue of automatic decomposition of MIP is currently the main obstacle in mak-
ing decomposition-based solvers like [13] as effective as generic branch-and-cut
based solvers like [2–4]. While the latter require no input besides the MIP itself,
decomposition-based solvers require a decomposition pattern to be given along (or to
be generated by pre-processing plugins). If finding an arbitrary one is trivial, identi-
fying one of high quality asks for specific mathematical programming skills.

The main issue is evaluating the quality of a decomposition before actually using
it in an optimization run.

Theoretical investigations trying to highlight structural results on the quality of
decompositions are hard to carry out, unless specific combinatorial problems are
considered. For instance, in [28] the authors investigate the strength of Dantzig–
Wolfe reformulations for the Stable Set problem, and provide interesting insights.
In particular, they were able to give a characterization of the strongest and weakest
decomposition in terms of dual bound.

Currently, themost successful approaches to generalMIPs are fully empirical. That,
is some proxies for decomposition quality are considered, which readily come from
single specific static features, namely number of blocks (|J |) and size of the borders
(number of constraints (5) and number of variables y). Algorithms optimizing these
features are termed static algorithmic detectors in the literature. Unfortunately, these
measures are not always consistent [20]. On the other hand, it is known that decompo-
sitions quality is not random. For instance, in [29] the authors performed a statistical
investigation by generating and solving all the possible Dantzig–Wolfe decomposi-
tions of a collection of instances. Their study highlights that only a small number of
different bounds occur, suggesting that a hierarchy of Dantzig–Wolfe decompositions
exists and that more often than not, random reformulations produce weak bounds.
Therefore, decompositions quality is expected to be predictable to some extent.

In fact, statistical investigations are more fruitful. Most rely on a common assump-
tion: the effort it takes to fully optimize the corresponding MIP can be estimated by
a data driven approach, considering the optimization process of instances which are
similar in terms of static features. We report, in particular, the results of [23]: the
authors collect a dataset of optimization run logs, matching static MIP features with
the computing time required by decompositions produced by various static algorith-
mic detectors of [13]. Then they train machine learning models which are able, given
a new MIP instance, to predict which is the most successful detector to use, and if a
decomposition approach is promising or not for that specificMIP. Their positive results
open the road to a realistic option in practice: to preprocess the MIP instance and run
decomposition-based solvers only if it is predicted to be amenable for a decomposition
approach, running standard branch-and-cut otherwise. In principle, machine learning
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models could be employed to further enhance the performance of that approach, tuning
the sets of detector parameters as well [26, 30]. However, even that would bring little
improvement if the predictive features are not those considered by the algorithmic
detectors.

Indeed, independently and concurrently, we have carried out preliminary investi-
gations which also use a data-driven approach, but aim at an orthogonal intent: that of
clarifying which static features are worth considering. In particular, we investigate if
combinations of static features exist, which are predictive of decompositions quality,
and how to exploit them.

We focus on unstructured problems, that is, those problems for which no semantic
information is enriching the MIP. As explained in the Introduction, this is a typical
working condition of a general purpose solver. Additionally, structured instances from
the literature typically present only few (usually one) good decompositions. There-
fore we expect problems with special structures to be easily detected and handled by
techniques from the literature.

We tackle the automatic decomposition problem with a two step detection process,
that is decomposition generation and decomposition scoring. Ourmodelsmainly focus
on scoring.We keep as proxies for a decomposition quality two parameters: the duality
gap produced by the corresponding relaxation (Q), and the time it takes to compute it
by means of column generation, normalizing them to scores, which are real values in
a range [0, 1], the higher the better.

In [21] we propose supervised learning models, mapping static decomposition
features to bound and time scores, exploiting a dataset including about 1000 decom-
positions for each of 36 base MIP problems from the MIPLIB. These decompositions
were sampled by a randomized greedy algorithm that iteratively picks constraints with
a probability directly proportional to their sparsity, builds well-formed blocks and pos-
sibly aborts and restarts the process if the structure of the tentative decomposition is
not satisfying certain criteria (in our implementation, at least three distinct blocksmust
be present). With an abuse of terminology, through the paper we refer to a decompo-
sition generated by such a procedure as random decomposition, although it is in fact
a sampling from a set which is much smaller than that of all possible decompositions,
and is not performed with uniform probabilities.

We show that data driven regressors are successful in predicting time score, when
applied to both new decompositions for one of the known 36 base MIP instances,
and to new decompositions for new MIP instances which are obtained by perturbing
data of the base ones. Instead, bound score prediction is reliable mostly when facing
new decompositions of known MIP instances. In [21] we also sketch a proposal for
a fully Data Driven Detector, that is a software component that receives in input a
MIP instance and produces as output a decomposition pattern using only data driven
models. In that proposal, given a MIP instance, our detector generates a set of random
decompositions and then, in its best configuration, scores themwith data driven bound
and time regressors. The set is then rankedwith a dominance function inwhich for each
decomposition i we compute the percentage of decompositions that i dominates in the
set, in terms of bound and time predicted scores. More in detail, given decompositions
i and j with time score Ti (resp. Tj ) and bound score Bi (resp. Bj ), decomposition i
dominates j if and only if:
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Fig. 1 Sketch for the proposal of a data driven detector

(Ti > Tj ∧ Bi ≥ Bj − ε) ∨ (Ti ≥ Tj − ε ∧ Bi > Bj ).

The decomposition with the higher dominance score is then returned as output.
Additional configurations include a preprocessing filter based on a classifier of good
and bad decompositions, in the sense of Pareto-Optimal in the space of time and score
bounds, and the possibility of returning more than one output. For completeness, in
Fig. 1 we report the outline of our proposal.

Besides seeking for good computational behavior, such an architecture is also
designed to evaluate the potential of a statistical approach to the generation of good
decompositions. In fact, surprising properties of random sampling solutions have
already been discussed in the literature [31], although in different contexts. Over-
all, experimental analysis on synthetic, previously unseen MIP instances reveals that
our proposal is promising. In particular, the top 8 decompositions ranked by our pro-
totype, for every instance, showed an average dominance score equal to 84%, that is,
the decompositions were very close to the Pareto frontier in the space of time and
bound scores of those that were generated by our algorithm.

In [22] we tackle the problem of further refining decompositions to improve their
computational performance features. To this end, we develop a local search algorithm
that, given a decomposition for a MIP instance, exploits our data driven models to
reformulate it, providing as output a newdecomposition pattern.A solution is therefore
an assignment of each constraint to either one of the blocks or to the border. A move
consists in removing one constraint from the border, and inserting it in one of the
blocks. Hence, the neighborhood we consider is the set of all decompositions whose
border is identical to that of the current solution, except for a single constraint which
is missing (and appears instead in one of the blocks). More in detail, we generate
each neighbor decomposition by moving a constraint from the border to one of the
blocks, andwe repeat this for every constraint in the border and every block. Therefore,
although polynomial in size, from a computational point of view, the neighborhood can
contain a very wide selection of decompositions. Furthermore, this move guarantees
that the bound cannot worsen, since the operation has the effect of including one
more constraint in the definition of the set θ j on which convexificaton is performed
(and therefore starts having effect on the single extreme points and rays in S j and
R j instead of their linear combination). To explore the neighborhood we evaluate all
its elements with our data driven time predictor only, and select a candidate with a
best improvement search strategy. More in detail, a decomposition is chosen that is
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Fig. 2 Local search algorithm outline

reported to be faster. We repeat these operations until termination. The outline of the
algorithm is reported in Fig. 2.

We performed preliminary tests at the root node of the branching tree with a
prototype implementation, on a small set of 5 previously unseen problems from
MIPLIB2017 [32]. In this preliminary setting, local search is capable of consistently
improve decompositions provided by either static detectors or the data driven detector
from [21].

3 Framework architecture

In the following we propose our fully data driven framework for detection and
enhancement of Dantzig–Wolfe decompositions. In terms of architecture, the frame-
work is composed of the following major components: Decomposition-trainer (D-
trainer), Decomposition-preprocessor (D-preprocessor), Decomposition-optimizer
(D-optimizer).

The overall structure of the framework is detailed in Fig. 3. Its typical use flow is
designed to be the following. The user activates, in an offline phase, the D-trainer: it
setups and trains the data driven models that will be used by the other components,
exploiting a database of existing optimization run logs, and possibly enriches it by

Fig. 3 Framework outline
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further simulations. As an example, the D-trainer database can be initially populated
by runs of randomdecompositions ofMIPLIB instances (aswedid in our experiments).

At runtime, instead, the user submits a new MIP instance to our framework. Such
a MIP instance is handled by the D-preprocessor, which detects if it is amenable for
a decomposition approach, generates a decomposition and potentially enhances it.

When this operation is complete, the MIP instance together with its decomposi-
tion pattern are given as input to the D-optimizer, which carries out the optimization
process.

3.1 Component design

The most challenging component from a methodological point of view is clearly the
D-preprocessor, as the D-trainer allows the embedding of effective existing machine
learning techniques, and the D-optimizer may consist in running generic implemen-
tation of a branch-and-price algorithm, which have already been proposed in the
literature.

D-trainer The Decomposition-trainer is an offline component that setups our
machine learning models to be later used by the D-preprocessor. In particular, we
assume to work with a dataset of decompositions, described by a set of features, that
can be either provided beforehand or can be generated by the tool from a collection of
MIP instances.When facing the second scenario, we first generate awell diversified set
of random decomposition patterns for every MIP instance. We recall that by random
decompositions we actuallymean those produced by the randomized greedy algorithm
that we proposed in [20]. Furthermore, the features we propose to use are those listed
in [20]. They can all be computed by algebraic computations on the elements of either
the MIP instance or the decomposition pattern, except for a total unimodularity score,
discussed in Appendix 1. At every iteration of the algorithm, one constraint is sampled
and assigned to a new block, while taking care of merging blocks that share common
variables. When these operations are finished, preprocessing features are computed
along with computational ones, obtained through simulations that run until either a
timelimit is reached or the root node of the branching tree has been fully processed.
Finally, the dataset is cleaned and normalized, with a setup identical to [20].

The dataset is then finally used to train independent regressors, for time and bound.
We found decision forests trained by means of gradient boosting to be a pertinent
choice in this step.
D-optimizerTheDecomposition-optimizerworks at run-time andmakes use of generic
column generation frameworks to solve the candidate decomposition, obtained from
D-preprocessor, to optimality. We remark that this is a completely generic approach
and therefore simulation performance is strongly bounded by the available tools.

3.1.1 D-preprocessor

When a user submits to our framework a MIP instance for optimization, we use our
machine learning models to detect and improve a decomposition. A detection phase
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is employed to provide a starting decomposition either by using static algorithmic
detectors like those of [13] or using a data driven detector by filtering, with a setup
like that of [21]. In detail, we generateM decomposition as follows.We run the greedy
randomized algorithm of [20] searching for decompositions with at least 3 blocks; if
the algorithm fails 10 times, we perform 5more attempts, requiring at least 2 blocks; if
none can be found, the dummy decomposition with a single block is taken. We repeat
this process M times, we compute their static features, apply the models provided by
the D-trainer and rank them through a custom dominance function based on the scores
provided by the time and bound regressors. Then we consider the decompositions
produced by the static algorithmic detectors and score them. The best decomposition
is finally chosen.

When detection is complete we enhance the starting decomposition with local
search, with settings similar to the ones proposed in [22] and reviewed in Sect. 2.2.
That is, we iteratively explore a neighborhood of decompositions and choose the
reformulation that is predicted to be of highest time score by our models, with the aim
of progressively strengthen the dual bound. We present the D-preprocessor pseudo-
code in Algorithm 1. We report that two main issues complicate local search: (a)
the neighborhood is large, and each solution needs to be evaluated by an external
regression model and (b) the effect of each move can be measured only indirectly,
by considering a prediction on the effect of convexifying one constraint at a time.
Traditional local search methods did not prove successful.

In our preliminary attempts, the algorithm terminates either when a certain percent-
age of constraints is present in blocks (Cvx) or when the next candidate decomposition
predicted quality has a considerable drop from the best predicted score (Tbest ) found
among all iterations.

Although promising, performances were not always consistent. Therefore, we pro-
pose to further improve the local search methods in three directions. First, we consider
the impact of different selection strategies that involve multiple decompositions. Sec-
ond, we consider how to improve computing times by means of sampling. Third, we
design an efficient implementation that allows to tackle even large scale instances.
Large neighbourhoods exploration by constructive selection strategies We explore
the possibility of simultaneously selecting two moves, that convexify constraints in
different blocks. To this end, after the neighbourhood has been generated and a score
has been assigned to each of its solutions, we scan the neighborhood for a pair of
moves to generate a new solution.

We choose the moves that yield decompositions with minimum predicted time that
have been generated through the selection of constraints that form an orthogonal pair,
that is, two constraints that share no variables. This has the effect of reducing block
merging. We take care of selecting ones whose score is within a certain threshold from
a decomposition of maximum time score. If no orthogonal pair can be found having
these features, only a single decomposition of highest predicted time score is chosen.

Instead, when an orthogonal pair is detected we generate a new decomposition by
moving first the most promising constraint to its assigned block. Since this move can
change the overall structure of the candidate decomposition, we check that the newly
modified block and the second constraint are still orthogonal. If they are, we move the
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Data: MIP instance P, detection strategy DD_detection, number of starting decompositions n
Result: decomposition D’
if DD_detection then

Δ = ∅;
for i ∈ seq(0,n) do

Drandom = generate random decomposition(P);
Δ = Δ ∪ Drandom ;

end
T = predict times(Δ);
B = predict bounds(Δ);
R = compute ranking(Δ, T, B);
D = return first ranked(Δ, R);

else
D = find static decomposition(P);

end
Dcand = D;
enhance = true;
while enhance do

Γ = ∅ ;
for i ∈ border(Dcand ), j ∈ blocks(Dcand ) do

Dnew = Dcand ;
move(i, j) =

remove i from border(Dnew);
add i to block(Dnew , j);
merge blocks(Dnew);

Γ = Γ ∪ Dnew ;
end
T = predict times(Γ );
sort(Γ , T);
D’ = return highest time score decomposition(Γ );
if check termination() then

enhance = false;
else

Dcand = D’;
end

end
Algorithm 1: D-preprocessor pseudo-code

constraint in its respective block. Otherwise, we scan for another orthogonal constraint
and if one is found, we insert it. We then proceed to the next steps of the algorithm.

An outline of the orthogonal selection is proposed in Fig. 4.
Improving generation efficiency through sampling Repeating the exploration of the
full neighborhood space at every iteration is expected to be very taxing in terms of
computing time, and possiblymemory,when facing large instances orwhen taking into
account more complex neighborhood exploration strategies like orthogonal selection.
For this reason, we propose an alternative generation procedure that makes use of
sampling to improve efficiency while guaranteeing that a representative portion of the
neighborhood is considered. It relies on a standard argument from statistics, but we
are not aware of similar adaptations in a local search context as ours. In detail, we look
for an estimate of the neighborhood with probabilistic guarantees. We remark that by
drawing a random subset of decompositions, and computing their average score (resp.
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Fig. 4 Local search algorithm (orthogonal selection outline)

the standard deviation of this sample), the sample mean (resp. sample variance) is an
unbiased reliable estimator of the mean score (resp. its standard deviation) [33].

Let N be the subset of decompositions in our sample, with k = |N |, and let si be
the score of each decomposition i ∈ N . First, we can compute their sample mean s̄

s̄ =
∑

i∈N

si
k

and their sample variance

σ 2 =
∑

i∈N (si − s̄)2

k − 1

With these two values we compute a (1−α) confidence interval estimate of the average
score s̃ in the neighborhood:

s̃ ∈
(
s̄ − z α

2

σ√
k
, s̄ + z α

2

σ√
k

)

with probability (1 − α), where z α
2
is is the quantile value α

2 of the standard normal
random distribution. That is, our modified generation samples from a uniform distri-
bution k decompositions in the neighbourhood, evaluates them with our data driven
time regressor and then computes the sample mean and the sample variance to build a
confidence interval estimate of the average value in the neighborhood. Whenever the
interval falls within a certain threshold, that we set as a parameter, the generation step
is stopped, and the decomposition of highest score is returned. Otherwise, sampling is
repeated. In such a way we have a guarantee, although probabilistic, that the chosen
decomposition has a score which is better than the average. Furthermore, since the
squared difference of its score with respect to s̃ is the maximum over the sample, and
therefore trivially not lower than σ 2, we also expect it to be better than a large fraction
of the decompositions in the neighbourhood. Empirically, it is in fact the case.

The principle of such a procedure is in fact similar to a best improving move in
local search. However (a) the scores are estimated by regressors, which give no special
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Fig. 5 Local search algorithm (sampling outline)

structure to drive exploration algorithms (b) scores are statistical estimates, which are
more reliable when many of them are measured and compared.

After generation has been completed the algorithm proceeds to selection and the
subsequent steps. A graphical outline of the algorithm with sampling can be found in
Fig. 5.

3.2 Implementation

Finally, we detail our implementation choices.
D-trainer When needed, we handled the generation, cleaning and feature normaliza-
tion of the dataset with simple R scripts. Simulations were computed with the Generic
Column Generation (GCG) 2.1.1 tool.

We used xgboost library 1.0.2 of Python 3.6 to train our data drivenmodels, with the
following custom parameters: maximum depth of a tree (max_depth) = 13, learning
rate (eta) = 0.1, maximum number of iterations (nrounds) = 100.

In Fig. 6 we report an estimate of the most important features of our regressor
models for both time and bound. Abbreviations in the figures are as follows: average
(avg), standard deviation (stdev), constraints (conss), right hand sides (rhs), objective
coefficient values (obj), number of variables/number of constraints (shape), number of
nonzeros/(number of constraints · number of variables) (density), max - min (range).
Leading N means normalized. In detail, xgboost trains a forest of decision trees [34].
Each of them recursively splits the dataset by performing tests on single feature values
(split points), until a sufficiently homogeneous partition is obtained. As a measure of
feature importance we take the number of nodes in which the feature was chosen for
the split test. On the y-axis we present the name of the feature whilst on the x-axis we
report the number of xgboost feature splits. We notice that 80% of the top features are
shared between the two models. In particular, the number of blocks results the most
important one. This is expected and consistent with the findings of [17], that show
that the number of blocks can be a proxy for the solving time of a given MIP with
a given decomposition. Indeed, such a phenomenon is likely to appear not only for
Dantzig–Wolfe, but for any decomposition method. However, this results not being
the only good indicator: our models combine it with features mainly describing the
shape of the blocks and the right hand side of the constraints. Further research is likely
to be necessary to understand the specific impact of each feature, both independently
and in combination with the others. Nevertheless, we experimentally observe such a
phenomenon not to be negligible, as the splits using one of those two features are more
than those using the number of blocks.
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(a)

(b)

Fig. 6 Time and bound feature importance

D-optimizerWechose the generic branch-and-price implementation provided byGCG
3.0.1 with standard settings, giving as input both the MIP instance and the decompo-
sition scheme produced by the D-preprocessor. In our implementation, GCG makes
use of CPLEX 12.6.3 and SCIP 7.0.0.

3.2.1 D-preprocessor

The core of our framework was developed by integrating minimal Python 3.6 scripts
with a C++11 ad-hoc library. The former is used to handle the whole architecture by
managing input and output, logs, parameters, loading and usage of machine learn-
ing models, and calling additional bash scripts and the static algorithmic detectors of
GCG 3.0.1. In particular, it coordinates detection and employs our local search algo-
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rithm. Despite the skeleton of the framework, that includes quality evaluations and
termination of the algorithms, is managed through Python, we designed our code to
be as efficient as possible and deployed all computational intensive operations in our
C++11 library. Boost 1.72 was used to manage its integration. Our C++11 library per-
forms 3 major operations: generation of random decompositions through a sampling
algorithm, efficient features computation, neighborhood generation for local search.

As reported, we use the same sampling algorithm that was designed in [20]. How-
ever, we further improved it by exploiting thread parallelization through the OpenMP
library, with the aim of making data driven detection faster.

The last two operations are instead pivotal to employ local search algorithms on
large scale instances.Weachieved efficiencymainlybydesigning smart data structures.
In particular, we used the Boost library and vectors of dynamic bitsets to encode the
constraint matrix of the input instance and masks to show the variables set of each
block of a decomposition. This setup provides faster operations and has the advantage
of being memory efficient, since each element of the bitset occupies only one bit,
allowing to store large scale instances without issues.

However, when exploring full neighborhoods during local search, memory man-
agement is still important. In our solution, when we generate a new neighborhood we
start from a candidate decomposition. We create a new temporary one each time we
make a move, merging blocks that share common variables. Since these operations
have to be repeated each time we create a new decomposition, we avoid resizing any
data structure and we simply use vectors of boolean variables to keep track of which
blocks are active and which are now merged in other blocks. Features are computed
when a candidate decomposition is generated and are stored in suitable data struc-
tures. Since temporary decompositions modify one block, and disable the ones that
have been merged, we recompute only the features for that specific block. Aggrega-
tors are then used to compute means and other common statistics. Once features have
been computed, we store them and we discard the decomposition to create the next
temporary one. When generation has been completed and the neighborhood has been
scored, the new candidate decomposition is chosen and has to be recomputed. On one
hand, discarding decompositions has the advantage of saving memory. On the other
hand, it does not allow for easy computation of multiple decompositions in parallel.
A prototype of the latter scenario was implemented in the initial stages of develop-
ment. However, this version could not handle large input instances when exploring the
full neighborhood. It could however be viable when using sampling but, in general,
requires tuning depending on the workstation and the input instance.

We remark that further improvements could be possibly achieved by storing
sparse matrices in suitable data structures through compression. This should further
help memory management and access speeds, in particular, when facing large scale
instances.

4 Experimental analysis

Datasets In the following, we detail the two datasets that were used for training and
testing our framework.
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Dataset A, was taken from [20] and consists of 31,507 decompositions for 36
problems from MIPLIB2003 [35] and MIPLIB2010 [19]. For each decomposition,
we collected 117 static features and run simulations with GCG 2.1.1 to measure
computing time and dual bound, adding them as scores to the dataset. We passed all
of Dataset A to the D-trainer component to train our data driven models.

Dataset B consists of 30 previously unseen problems fromMIPLIB2017 [32], split
equally among easy, hard and open instances. When possible, we chose instances that
were listed in MIPLIB as “similar”, from a feature analysis, to those that are part of
Dataset A, that is used for training. A full report of the problems can be found in
Table 5, in the Appendix. We used Dataset B for benchmarks. We remark that none
of the instances of this Dataset is part of the training Dataset A: it consists of all
previously unseen problems.

We make Dataset A openly available to the research community[36].
Benchmark algorithms and parameter configuration In the following, we benchmark
state of the art static detectors and different configurations of our framework. In par-
ticular, we compare against multiple configuration of GCG 3.0.1: GCG with standard
settings (GCG), GCG with only hmetis based detectors (GCGHmetis) and GCG with
all detectorsmanually enabled (GCGFull ).We choseGCG andGCGFull to represent
two different scenarios in which the user either uses stock GCG to detect well known
structures or activates all the detectors for a more general approach. Since we are
focusing on unstructured instances, we also considered exploiting graph based detec-
tors only (GCGHmetis). We note, however, that they are also included in GCGFull .
Additional standalone, fine tuned detectors were considered during preliminary tests,
however, performance was similar with the other configurations, improving only spe-
cific instances. Furthermore, with some settings, we faced frequent undocumented
solver errors. Finally, we compared against the community based algorithms of [37],
whose best implementation is featured in the DECOMP module of the commercial
solver SAS (SAScomm). Unfortunately we had no access to the full stand-alone ver-
sion of SAS, but we could run experiments on the SAS-OnDemand cloud service.
According to the aim of our test, only the community algorithm was enabled.

As outlined, when a new instance is given as input to our system, we detect a
starting decomposition by either using GCG static algorithmic detectors (standard
settings) or by filtering and selecting among randomly generated decompositions with
data driven ranking models. Then, we improve this decompostion with local search
methods. We label the configuration that makes use of our data driven techniques for
detection DDW . In this setting, we also consider two additional scenarios, detailed
in section 3.1.1, that include sampling for improving local search computing time
(DDWsample) and sampling along with an orthogonal selection move (DDWortho).
When we use GCG for the initial detection instead, we label this version DDWGCG .
Since both GCG and DDWGCG share the same starting decomposition, this scenario
can be seen a straight up comparison of performance for local search. Otherwise, the
framework employs our data driven filtering and ranking for initial detection.

For our data driven detectors, after preliminary experiments, we chose M = 1200
when facing small instances that presented a constraint matrix made of, at most,
1 million entries. Otherwise, M = 120 was used. For our local search algorithm,
Cvx = 85% and a quality threshold set to 15% from Tbest were found suitable for
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termination. Finally, under the DDWsample and DDWortho settings,we chose a sample
size of 1000 decompositions and a target interval estimate of the neighborhood mean
of ±0.01 with a 95% confidence.

Experimentswere performed on aworkstationwithUbuntu 16.04 operating system,
equipped with a quad-core Intel(R) Core(TM) i7-6700K 4.00 GHz CPU and 32 GB
RAM. Results concerning SAScomm include only bounds quality, as no detail about
the actual hardware dedicated to the cloud service is given. We also remark that not
only the detection algorithm changes, but the full computing framework, that could in
principle apply different pre and post processing techniques than GCG.
Computational issues We preface that in some conditions we were not able to either
use our local search methods or conclude some experiments.

First, we note that GCGFull would crash with all the available detectors enabled.
Wewere only able to conclude experiments only by disabling the following algorithms:
dbscan, constype and compgreedly.

Then, we report that with some optimization problems, the decomposition detected
by GCG had no horizontal border. This had the side effect that we could not apply our
local search moves, that create new decompositions by moving one constraint from
the border to one of the blocks. When using data driven detection instead we faced
issues during local search when the size of the neighborhood was too large (above
10 million decompositions) causing problems with data structures and computational
overhead. Furthermore, some decompositions could not be simulated with GCG, as
the tool would crash for undocumented internal reasons after few minutes. In the
following experiments, problematic instances are not reported or are presented with
empty records in tables.

4.1 Parameters tuning and preliminary experiments

We performed preliminary experiments over selected instances of Dataset B, at the
root node, with a 2 h timelimit for optimization. In particular, we focused on improving
computational time of heuristic features and on tuning selection strategies for our local
search algorithm. In the following, we report a summary of our preliminary results
and observations: full details can be found in the Appendix, in Sect. 1.
Heuristic features tuning First, we analyzed the impact of generating features at run-
time, duringour local search algorithms. In particular, preliminary experiments showed
that computing our total unimodularity feature (TU), a multi-round heuristic score
that describes similarities between each block of a given decomposition and a total
unimodularity matrix, could be computationally extensive. We therefore considered
different parameters, and found that a one-shot approach had little impact on time,
while providing strong bound improvements for particular instances.
Selection strategies profiling Then, we studied the impact of alternative selection
strategies for our local search algorithm. At every iteration, we considered choosing
the best candidate decomposition by exploiting the prediction of our data driven time
regressors, the number of blocks or hybrid approaches. In particular, we found that
hybrid solutions performed better. When the given decomposition was given by a
static detector, a more classical approach, that took into account the number of blocks
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first and the predicted time score second worked marginally better. When the given
decomposition was obtained from our data driven approach instead, considering the
time regressor first, and then the number of blocks provided the best results: about
10% better relative bounds with respect to the other configurations. We therefore used
this selection in all the subsequent experiments.

4.2 Overall framework analysis

Amore extensive experimental analysis was performed on the full Dataset B. We first
discuss detection and local search performance, then we present results at the root
node and with no node limit.
Detection and local search performance We first discuss performance and behavior
of detectors. In every experiment, we imposed a 2 h timelimit for local search for
DDWGCG and DDW . In case of timeout at least one iteration was always completed.
This timelimit was instead set to 10 mins for DDWsample and DDWortho. In Table 1
we present average results for every configuration (Conf.) and Easy (E), Hard (H)
and Open (O) instance categories (S.), dividing them in the following categories: pre-
processing times, local search (LS) neighbourhood size and local search termination
information. We report for time profiling: detection time (T. Det) and local search
time (T. LS) in seconds. Neighbourhood exploration is summarized with the size of
the neighborhood at the first iteration (Size) and the overall number of decomposi-
tion sampled (Sampled), whilst information about termination shows the percentage
of constraints in blocks before (S.Cvx) and after (E.Cvx) preprocessing, the overall
number of times local search terminated due to reaching the quality threshold (Sl) and
the number of instances (Ipr) in which we were able to perform at least one iteration
of local search (S.Cvx lower than 85%). Additionally, we also report the number of
iterations of the algorithm (It).

Experimental observation 1 Static detection is very fast on all instances. Data driven
detectors are competitive in all scenarios but two.

Generally, static detectors are really fast and can find a decomposition in few sec-
onds (T. Det). This can be observed with the DDWGCG configuration. In the other
settings, that employ data driven techniques, on average, more than 10 mins are nec-
essary to complete detection. We report, however, that this due to overhead in the
random sampling algorithm when facing a couple of very large problems with more
than 22,000 variables and 24,000 constraints. When we disregard these two results,
average time drops to 77 s. Therefore, detection performance is competitive but addi-
tional optimization of our random sampling algorithm is necessary to face massive
instances.

Experimental observation 2 A full run of local search requires on average 50 min.
When sampling is enabled, local search is completed in less than 3 min.

On a negative note, Table 1 (T. LS) shows that while completing local search
for DDWGCG takes, on average, about 7 mins, DDW requires 50 min, in particular
when facingmediumor large size problems. This is due to the dimension of the starting
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Table 2 Time comparison between GCG configurations and three different runs of DDWsample , when
solving instances at the root node

GCG GCGHmetis GCGFull DDWsample

Run 1 Run 2 Run 3

Time (s) 905.17 416.92 847.79 344.08 347.41 420.92

Solver errors 1 1 0 6 5 5

Timeouts 14 13 14 6 5 7

neighborhood (Size), that on average is over 3millions decompositions and, in themost
extreme cases, over 10millions. Therefore, although this setting is important for testing
and validation, at this time, configurations that employ sampling are the ones that
would be used in a real world scenario. Indeed, the overall number of decompositions
sampled over all iterations (Sampled) by DDWsample make about 2% of the size of the
neighborhood generated during the first iteration of DDW . Therefore, neighborhood
generation is much faster: the average time for local search is lower than 3 min.
Furthermore, the number of iterations (It) is more than doubled even when using a
10 min timelimit.

We also report that, in general, local search could not be applied to every instance.
Static detectors, in fact, are capable of finding decompositions much more convexified
(S.Cvx) than data driven detectors. In this case, local search could be employed (Ipr)
only for a third of the decompositions, the ones with a S.Cvx lower than 85%. The
other decompositions were simply moved to the optimization step.

Finally, we remark that, as an additional experiment, we studied the performance of
our framework when facing instances that, from a statistical analysis, are “similar” to
ones that are present in our training dataset.We reported this experiment in Table 10, in
the Appendix. Although familiarity seems to have a positive effect on results, further
investigations and tests on larger datasets are necessary to fully understand its impact.
Root node profiling In this part, we investigate performance when solving the root
node, with a 2 h timelimit for optimization, over all the instances of Dataset B. In
the following, we compare DDWsample against GCG, GCGHmetis and GCGFull .
Since samplingmight have an impact on the quality of the decomposition, we repeated
DDWsample experiments three times (run 1, run 2, run 3), to evaluate consistency and
performance. For each algorithm, we report in Table 2 the number of solver errors, the
number of timeouts and the average time (Time), in seconds, required for optimization
of instances that did not run in timeout. Lower values are better. Full results can be
found in Table 11 in the Appendix.

Experimental observation 3 DDWsample is on average faster than GCG configura-
tions when solving the root node, while hitting about half the number of timeouts.

We observe that DDWsample is on average more than twice as fast than GCG and
GCGFull and performs slightly better than GCGHmetis , at the root node. Further-
more, GCG, GCGHmetis and GCGFull reach respectively timeout in 47%, 43% and
47% of the experiments: only about 20% of the instances timed out when using our
framework. However, as reported at the beginning of this section, we remark that we
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Table 3 Comparison between three DDWsample runs against SAScomm and GCG configurations, at the
root node. We report the number of the times each configurations obtains the best gap and the number of
draws

Algo. SAScomm GCG GCGHmetis GCGFull

DWD sample run 1 DDW Best 10 DDW Best 6 DDW Best 6 DDW Best 6

Draw 4 Draw 15 Draw 14 Draw 14

SAS Best 9 GCG Best 3 GCG Best 4 GCG Best 4

DWD sample run 2 DDW Best 10 DDW Best 7 DDW Best 7 DDW Best 7

Draw 5 Draw 15 Draw 14 Draw 14

SAS Best 9 GCG Best 3 GCG Best 4 GCG Best 4

DWD sample run 3 DDW Best 10 DDW Best 8 DDW Best 7 DDW Best 8

Draw 5 Draw 14 Draw 13 Draw 13

SAS Best 9 GCG Best 3 GCG Best 5 GCG Best 4

faced undocumented solver errors in another 18% of the instances. As an approximate
reference for SAScomm optimization times, we report that the solver performed on
average slightly faster than our detectors, while hitting 6 timeouts.

A comparison in terms of best bound found is harder to carry on: different solvers
are more effective in different instances, in a comparable fashion. Full results for
bound profiling are detailed in Table 12 in the Appendix. In an effort for producing a
meaningful comparison, in Table 3 we report for the three runs of DDWsample, GCG,
GCGHmetis , GCGFull . and SAScomm the number of times our framework obtains
the smaller gap from the best known solution (DDW Best), the number of solutions
with the same gap (Draw) and the number of times static detectors obtain better gaps
(SAS/GCG Best). In the following, results take into account only instances for which
there were no computational issues for the algorithms considered in each comparison.

Experimental observation 4 At the root node, our framework obtains competitive
bounds with GCG configurations, performing equally or better in most cases.

When compared to GCG, our framework finds competitive bounds at the root node.
Indeed, in almost 50% of the instances the detectors obtain the same results. However,
we note that data driven detectors found better bounds in about 23% of the remaining
instances, while GCG was better in another 10%. Computation for the remaining
experiments could not be completed. Performance against GCGHmetis and GCGFull

is similar, albeit these detector improve around 14%of the experiments. The remaining
considerations still apply. Summarizing, we found no scenario in which data driven
detectors obtained less decomposition that provide better results than static detectors,
while providing faster optimization as well.

Experimental observation 5 At the root node, our framework and SAScomm improve
two different sets of decompositions.

When compared to SAScomm , our framework obtained better results in about 33%
of the instances, while SAScomm was better in another 30%. Differently from GCG,
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Table 4 Comparison between
data driven framework
configurations and GCG
configurations. We report the
number of the times each
configurations obtains the best
gap and the number of draws

Algorithm GCG GCGFull

DDWGCG DDW Best 4 DDW Best 2

Draw 14 Draw 12

GCG Best 2 GCG Best 5

DDW DDW Best 11 DDW Best 7

Draw 7 Draw 7

GCG Best 3 GCG Best 5

DDWsample DDW Best 10 DDW Best 6

Draw 7 Draw 8

GCG Best 4 GCG Best 6

DDWortho DDW Best 9 DDW Best 6

Draw 7 Draw 9

GCG Best 5 GCG Best 5

the number of ties is much lower, suggesting that indeed the two methods provide a
very different set of decompositions. That is, data driven techniques could allow for
better results than the community algorithm for a substantial set of instances.

Experimental observation 6 Sampling shows consistent times and bounds over all the
runs

We also remark that, even when using sampling in multiple experiments, our data
driven framework shows close results in terms of average time, number of timeouts
and bound quality over all the runs. This can be observed in Tables 2 and 3: the variance
among results from run 1, run 2 and run 3 is very small. That is, given an instance,
all the runs obtain similar performance. This suggests that some instances may be
more suited to a decomposition approach than others, that our method is reliable and
that sampling is representative of the neighbourhood. Indeed, our techniques were
designed to provide statistical guarantees through interval estimates. However, we
remind that no assumptions were made over the “goodness” of the neighbourhood.
Weprovide further insights and an interpretation of samplingbehavior in theAppendix,
in Section A.3.
Branch and bound profiling Finally, for this experiment, we chose a 5 h timelimit for
optimization, without limiting the number of nodes of the branching tree.

In Table 4 we compare the gap from the best known solution obtained by the con-
figurations of our framework (DDWGCG , DDW , DDWsample, DDWortho) against
GCG and GCGFull . Since GCGHmetis and GCGFull performed similarly in pre-
vious experiments, only results for GCGFull were reported for this test. For each
comparison, we present the number of times our framework obtains the smaller gap
(DDW Best), the number of solutions with the same gap (Draw) and the number of
times static detectors obtain better results (GCG Best). More detailed results can be
found in the Appendix, in Table 13.

All configurations hit the 5 h simulation timelimit on every instance, except for
gen.mps that was solved to optimality.
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Experimental observation 7 Performance of DDWGCG is similar to GCG.

More in detail, we report that when DDWGCG is used, improvements are present
but strongly limited. Indeed,when starting from a static decomposition, our framework
can only improve 13% of GCG decompositions, while most of the experiments have
the same performance. Only 7% of the cases perform worse. When compared to
GCGFull , most of the instances are tied, but overall GCGFull provides better bounds
in more cases. We remark that better results could be potentially achieved by using
the decomposition provided by GCGFull as input for our local search methods. We
assume however that the improvements would be limited with this setup as well.

In fact, we suspect that the limited gains are likely due to static detectors. As dis-
cussed, GCG provides decompositions with a well defined structure that, on average,
is strongly convexified. Even when our local search can be used, we expect its impact
to be strongly limited. This is also consistent with preliminary investigations [22].

Experimental observation 8 DDW performs better than GCG configurations.

Analyzing configurations that start from a data driven decompositions, we found
that DDW obtains consistently better results when compared to GCG, getting better
bounds in about 37% of the experiments. GCG can only obtain better performance
in 10% of the tests. When compared with GCGFull , results are close but our frame-
work can still provide noticeable improvements and reaches the minimum gap more
often than static detectors. However, we remark that, until further optimization, this
configuration requires a time expensive pre-processing operation.

Experimental observation 9 DDWsample and DDWortho perform better than GCG.
They are competitive with GCGFull . The two methods do not dominate one another.

Overall, when sampling is enabled, bound improvement is slightly reduced. How-
ever, the difference between using DDW and DDWsample is rather small and
acceptable: reducing the neighborhood size allows to employ our local search algo-
rithm to large size instances without incurring into noticeable penalties. In fact,
DDWsample still performs better than GCG in 33% on the experiments, while static
detectors obtain the better bound in 13% of the instances. However, in this case, per-
formance is equal with GCGFull . We remark that in this scenario the two methods do
not dominate one another and using DDWsample might indeed provide improvements
for different sets of instances thanGCGFull . DDWortho obtains larger scores in some
tests but overall, performance is similar. Summarizing, sampling retains most of the
capabilities of DDW while making the algorithm much faster.

We also observe that DDWsample obtained better bound improvements at the root
node when compared to static detector configurations. We suspect that the timelimit
and the generic nature of the solver might have an impact on branching performance.
If this is the case, longer experiments might be required to fully investigate if the uplift
found at the root node can translate in better solving times.
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5 Discussion and prospectives

This paper is motivated by the huge interest around general purpose solvers. It aims at
providingmethods that overcome some issues, arising in prospective trends, like using
them as a distributed service [7]. It is in fact not easy to make branch-and-cut scale in
similar scenarios. In this perspective, we tackled the problem of understanding how
to make use of alternative paradigms in a generic setting, since decomposition based
ones promise strong scalability [38]. We focused on achieving automatic Dantzig–
Wolfe decomposition methods. We proposed the first full data driven framework.
That is, we designed and implemented an architecture that, ahead of time, trains
machine learning models from optimization run logs. At optimization time, it receives
as input aMIP instance and creates a decomposition pattern by employing algorithmic
and data driven detectors that exploit the machine learning models. This candidate
decomposition is further refined by local search before optimization. We presented an
extensive experimental campaign, checking its behaviour on MIPLIB2017 instances
whichwere not part of training.We compared it to state of the art algorithmic detectors.
At the root node, we found our framework to reach the minimum gap more often than
every other considered detector, along with faster average optimization times and less
timeouts. When full optimization was considered, our DWD configuration was better
than both GCG andGCGFull , whilst using sampling provided better results thanGCG
and was comparable to GCGFull . Even in these scenarios, our detectors can provide
the best decomposition for instances that are not suited for specific static algorithms.
This is also particularly evident in SAScomm comparisons.

Our experimental campaign is not only instrumental in proving the computational
effectiveness of our approach, but is also designed to provide some insights into the
whole process of decomposition generation and improvement. For instance, we found
out that computing a “degree of total unimodularity” of blocks, even by a rough
estimate, has a strong impact inmodels.We also found that features like right hand side
values and ratio between variables and constraints in each block are chosen as strongly
predictive, along with the number of blocks. We finally mention that particular subsets
of instances look to be more fit for our approach than for both GCG and SAScomm :
further investigating their features might allow some understanding on what might be
still “missing” in current algorithmic detectors.
Prospectives. Overall, from a pure average computing time point of view, the perfor-
mance of our framework alone is still far from state of the art solvers such as CPLEX.
Indeed our system, and more in general alternative paradigms, are currently more
promising when integrated side by side along with current solvers to optimize special
classes of problems that are suitable to decomposition approaches. Nevertheless, state
of the art solvers, have received decades of fine tuning and engineering. We feel that a
technological update is required in our setting as well to guarantee the same stability
and proper speed-ups.

Certainly, extending Integer Programming techniques for branching, generic heuris-
tics and cuts to a decomposition setting would be strongly beneficial.

As introduced above, we expect a real breakthrough when branch-and-cut solvers
will be compared to decomposition based ones on computing architectures which
use many smaller computing units, that might become available dynamically, instead
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of a single powerful dedicated workstation. In fact, concurrent and distributed [38]
techniqueswould fit perfectly, andmight provide an additional (and orthogonal) speed-
up in generic decomposition-based solvers.

Nonetheless, our efforts in obtaining automatic decompositions confirmed that a
data driven approach is viable and performs in most settings better than state of the
art algorithmic detectors such as those of GCG.

That leads us to the following key observation. In their very basic nature, the
decompositions produced by data-driven methods can be seen as heuristic solutions,
which could potentially be produced also by algorithmic detectors. Therefore, the
improvement we get with respect to state-of-the-art detectors is more likely to be due
to the use of different models, which are implicitly identified through our data-driven
approach, than to the use of better optimization algorithms. Indeed, this is matching
with our previous statistical evaluation [20]: the number of blocks and the size of the
border, which are often the main indicators used in algorithmic detectors, are certainly
important but not enough to fully capture decompositions quality.

In particular, according to our research, the next step in data driven detectors appears
to be bound prediction. We feel that this might be a key to fully unfold automatic
decomposition potential, along with the ability of using our models as white box to
guide the search in new algorithmic detectors.

Given the effort it requires, we feel that the creation of our dataset of several
thousands random decompositions of MIPLIB instances, together with their scoring,
might be itself a valuable side-product of our research. We make it openly available
to the research community [36], to ease other researchers in contributing along these
directions.

In fact, we hope that our research might open new perspectives in the field of
automatic decomposition, possibly enlarging the research focus from decomposition
algorithms to decomposition quality models.
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Appendix A

A.1 Framework tests: base instances of the Dataset

For each instance of our testing Dataset B, we present in Table 5 its name (Instance),
a difficulty label (Status), a familiarity score with respect to our training dataset A
(Fam.), the overall number of variables (Var.), the number of integer (Int.) and binary
(Bin.) variables, the overall number of constraints (Constr.) and the percentage of non-
zeroes in the constraint matrix (Nzs). We also report the best value of the objective
(z*) found to date (17/08/2020).

Overall, we reported direct familiarity (1) for any instance that was labeled similar,
from a statistical analysis, to one of the decompositions present in our training dataset.
Otherwise, we reported indirect familiarity (2) or no familiarity (3). An instance that
is indirectly familiar has no apparent correlation to our training dataset but shows
similarities to other instances that, in our testing dataset, are reported as directly
familiar.

Preliminary experiments

Preliminary experiments were performed on selected instances of Dataset B.We chose
15 instances divided in 10 easy problems and 5 hard problems. In the following, we
present preliminary results and parameter tuning profiling. Experiments were always
stopped at the root node with a simulation timeout of 2 h.
Heuristic features tuningOur datasets detail a total unimodularity feature (TU), a score
based on how similar each block of a decomposition is with a total unimodular matrix.
We compute this score with an heuristic algorithm, as detailed in [20] and we use it to
train our models and to score new decompositions. Preliminary results suggested that
its computation with standard settings (k = 10 runs of the heuristic) would be time
expensive when exploring large neighborhoods. We therefore investigated its impact
on time and dual bound by testing two configurations: either the heuristic is used (TU
on) with a conservative one-shot approach (k = 1) or it is not used (TU off). For
the former, we used our framework with standard settings. For the latter, we tested
the instances with another framework that had identical settings but had been trained
without taking into account the TU feature. Both cases were tested with DDWGCG .

In Table 6 we report for every instance and every configuration the absolute local
search time in seconds. We also present the relative performance (Rel. Perf.) as the
ratio between TU off and TU on. Scores below 1 mean that a slowdown occurred,
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Table 5 Instance statistics for every base optimization problem of Dataset B

Instance Status Fam. Var Int Bin Constr. Nzs (%) z*

beasleyC2 Easy 1 2500 0 1250 1750 0.11 144.00

berlin Easy 2 5304 0 2652 2704 0.07 1044.00

bienst1 Easy 1 505 0 28 576 0.75 46.75

csched007 Easy 1 1758 0 1457 351 1.03 351.00

gen Easy 3 870 6 144 780 0.38 112,313.36

mkc1 Easy 1 5325 0 3087 3411 0.09 −607.21

newdano Easy 1 505 0 56 576 0.75 65.67

piperout-d20 Easy 1 11,961 149 11,788 15,562 0.10 29,948.00

ran14x18-
disj-8

Easy 1 504 0 252 447 4.56 3712.00

timtab1CUTS Easy 1 397 94 77 371 1.18 764,772.00

bg512142 Hard 1 792 0 240 1307 0.38 184,202.75

dg012142 Hard 1 2080 0 640 6310 0.11 2,300,867.00

neos-
2294525-
abba

Hard 1 10,842 0 10,086 11,122 0.07 321.15

neos-
4338804-
snowy

Hard 2 1344 42 1260 1701 0.28 1471.00

ns1430538 Hard 2 33616 0 1680 34,960 0.02 88.00

queens-30 Hard 3 900 0 900 960 10.81 −40.00

rococoC11-
010100

Hard 1 12,321 166 12,155 4010 0.10 20,889.00

set3-20 Hard 3 4019 0 1424 3747 0.09 159,462.57

tbfp-bigm Hard 1 2406 0 2404 35999 0.09 24.16

tw-myciel4 Hard 3 760 1 759 8146 0.45 10.00

cdc7-4-3-2 Open 3 11811 0 11811 14478 0.15 −289.00

n370b Open 1 10,000 0 5000 5150 0.04 1,236,963.00

nag Open 3 2884 35 1350 5840 0.16 945.00

neos-
1420790

Open 3 4926 0 540 2310 0.11 3121.42

neos-
3009394-
lami

Open 1 2757 52 2704 2028 0.12 5.50

ns1631475 Open 3 22,696 211 22,470 24,496 0.02 11,100.00

rococoC12-
010001

Open 3 16,741 187 16,554 4636 0.08 34270.00

set3-09 Open 1 4019 0 1424 3747 0.09 176,497.15

siena1 Open 3 13,741 0 11,775 2220 0.85 10,359,207.14

van Open 3 12,481 0 192 27,331 0.14 4.57

otherwise using the heuristic provides faster computing.Aggregate data shows the total
completion time for each configuration and category and their relative performance.

Appendix: Experimental observation 1 Computing the total unimodularity feature
with a one-shot approach has negligible impact on local search time
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Table 6 Local search time comparison between TU off and on when using DDWGCG (Root node)

Instance Status Time (s)

TU off TU on Rel. Perf.

beasleyC2 Easy 9.10 9.71 0.94

berlin Easy 170.76 196.04 0.87

bienst1 Easy 3.49 9.13 0.38

csched007 Easy 47.07 55.37 0.85

gen Easy 0.77 0.79 0.98

mkc1 Easy 805.88 853.26 0.94

newdano Easy 2.67 4.44 0.60

ran14x18-disj-8 Easy 136.29 102.11 1.33

timetab1CUTS.mps Easy 1.99 15.07 0.13

Overall 1178.03 1245.93 0.95

neos-4338804-snowy Hard 13.68 14.34 0.95

ns1430538 Hard 5134.06 5193.11 0.99

queens-30 Hard 18.53 34.61 0.54

set3-20 Hard 1063.38 821.92 1.29

Overall 6229.64 6063.98 1.03

Overall 7407.67 7309.91 1.01

Using the heuristic with a one shot approach causes minor degradation on local
search time for almost every instance. However, the overall impact on the total com-
pletion time is limited and very well manageable as we find slightly slower results on
the easy category and faster ones on the hard category. This is within computational
tolerance of two different runs.

In Table 7 instead, we report for every instance and for every configuration the
absolute time in seconds required to solve the decomposition generated by our frame-
work. We also present the relative bound improvement as the ratio between TU on
and off, that is, scores above one mean that using TU is beneficial, whilst scores lower
than 1 mean the opposite.

Appendix: Experimental observation 2 Our total unimodularity feature is effective in
improving the strength of the dual bound

Results confirm that computing TU can improve bounds in specific instances. In
particular, among easy problems, the dual bound of bienst1 and newdano is dou-
bled when using the heuristic. Otherwise, no relevant negative performance impact is
measured. Solving time is generally comparable to when TU is not used except for
timetab1CUTS that shows a considerable slowdown in exchange of a slightly better
bound. Hard problems instead were not sensitive to any improvement or worsening
of either bound or time. We suspect that these instances might simply not share any
characteristic of totally unimodular ones and therefore our heuristic does not have any
impact on them.
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Table 7 Optimization comparison between TU off and on when using DDWGCG (Root node)

Instance Status Time (s) Relative bound improv.

TU off TU on

beasleyC2 Easy 8.09 8.41 1.0000

berlin Easy 75.05 71.00 1.0000

bienst1 Easy 10.59 5.59 2.4770

csched007 Easy 72.08 154.76 0.9890

gen Easy 11.33 14.02 1.0000

mkc1 Easy 623.53 611.64 1.0000

newdano Easy 2.58 1.99 2.1370

ran14x18-disj-8 Easy 5.11 5.67 1.0000

timetab1CUTS Easy 2.36 496.58 1.0900

Overall 810.72 1369.66 1.2990

neos-4338804-snowy Hard 7330.06 7329.39 1.0000

ns1430538 Hard 2128.53 2044.34 1.0000

queens-30 Hard 7324.97 7309.91 1.0000

set3-20 Hard 6259.35 6505.64 1.0000

Overall 23,042.91 231,89.28 1.0000

Overall 23,853.63 24,558.94 1.2140

We also notice that the instances that performbetter in our full experimental analysis
are the ones that show bigger bound improvements in this test. This may be correlated
with the total unimodularity feature. However, further investigations, with a bigger
dataset, are required to confirm this behavior.

Following the results of these tests, we decided to include our total unimodularity
feature (k = 1) for the training of our models and for detection.
Selection strategies profiling In the following experiments we investigate the impact of
different selection strategies for our local search algorithms on the candidate decom-
position.

In [22], decomposition selection was based on the best score provided by our data
driven time regressor but we know, from literature [17], that the number of blocks
of a decomposition is also a suitable indicator of the time that is required to solve it.
That is, solving decompositions with a small number of blocks is on average slower
than solving ones with many. Therefore, in order to evaluate the relative effect of data
driven choices with respect to facts from the literature, we tested our framework by
integrating both configurations, along with others that combine the two methods, in
the selection step of local search.

We remind that this operation is a critical part of the algorithm as choosing a
suboptimal move may have a deep impact on the structure of the decomposition and
its computing time, likely propagating its effects on all the subsequent iterations of
local search.

In particular, we consider the following configurations, in which decompositions
are chosen by:
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T best time regressor score only.
B larger number of blocks only.

TB best time regressor score first, larger number of blocks second (in case of a tie).
BT larger number of blocks first, best time regressor score second (in case of a tie).

We tested these settings on both DDWGCG and DDW . As a baseline for perfor-
mance, we remark that a positive comparison against randomly chosen decomposition
was presented for configuration T in [22].

In Table 8 we report the results for DDWGCG . For every instance and selection
strategy, we present the solving time in seconds. Since changing selection strategy
has no noticeable overhead, local search time was disregarded for this experiment. We
also report the bound improvement as the ratio between any of T, B, BT selections and
TB. Scores below 1 mean that TB performs better, otherwise it performs worse.

Appendix: Experimental observation 3 When starting from a static decomposition,
the BT strategy works marginally better

Results show that all configurations work quite well, but overall, combining selec-
tion strategies seems to be more effective. In particular, BT allows to obtain the best
average bounds in the shortest overall time. However, we remark that the TB config-
uration is quite close both in terms of time and bound.

In Table 9 we present instead results for DDW . For every instance and configura-
tion, we report the solving time in seconds and the bound improvement with respect
to TB.

Appendix: Experimental observation 4 When starting from a data driven decompo-
sition, the TB setting performs better, also providing about a 10% improvement in
bounds

Similarly to the results of experiments with DDWGCG , all the configurations yield
decompositions quite close in terms of solving time. This is expected, as the number
of blocks is a suitable proxy for solving time and our regressors heavily take into
account this feature, as reported in Fig. 6. However, the TB strategy allows to obtain,
on average, a 10% boost in dual bound. Even if our local search algorithm does not
make any assumption on the quality of the bound of the candidate decomposition, we
suspect that using the number of blocks as the only criterion for selection might have a
negative effect and produce decompositions with suboptimal structures, in particular
in our local search settings.

Overall, the TB configuration was the most consistent in all settings and was chosen
for the full experimental analysis.

A.2 Familiarity profiling

A brief overview of the impact of familiarity is presented in Table 10 for DDWGCG ,
DDW , DDWsample and DDWortho. For each configuration, we report the average
bound improvement as the ratio between the bound obtained by solving the decompo-
sition provided by our framework and the one proposed by GCG. We confront direct
familiarity (1) against the other scenarios. We chose a 5 h timelimit for optimization.
We also report the results for DDWsample at the root node with a 2 h timelimit.
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Table 10 Relative bound improvement over direct familiarity (1) and otherwise, with respect to GCG

Fam. DDWGCG DDW DDWsample (Root) DDWsample DDWortho

1 1.1034 1.1307 1.2954 1.0843 1.1141

Otherwise 1.0000 1.0290 0.9966 1.0371 1.0264

A.3 Sampling analysis

In the following we consider sampling, providing an interpretation about its behavior
and the consistency of its results. In particular, we run DDWsample 3 times for each
test and measured the bound of each simulation at the root node, with a timelimit of
2 h.

We report in Fig. 7, the difference (gap) between the best predicted score in the
sample and the sample mean for each iteration of local search, for each instance. We
present these values for each run, with a different color.

We can observe that in the majority of the instances the gap is greater than 0 and not
constant, as it tends to grow alongwith the number of iterations. That is, even if the gap
starts small,when the algorithmprogresses and thedecompositions getsmore complex,
the average neighborhood quality decreases and it is easier to find good candidates
among many bad ones. In some instances, this behavior however seems to stop after a
certain point, when the gap collapses. We expect that when many different constraints
have been convexified, decompositions might get more and more homogeneous, as
more blocks with shared variables tend to merge. After this happens, the gap tends to
slowly build up again as diversification within the neighborhood increases with the
number of iterations.

We remind that in general, our termination policy allows to avoid potential bad
moves: when the next candidate decomposition has a predicted score that is much
lower from the best one found during the current run, our algorithm terminates before
making that particular bad move.

Overall, some insights about consistency are also visible: sampling often shows
repeating patterns in predicted scores among all the different runs. It also suggests,
however, that the starting decomposition has a very strong impact on the overall quality
of the neighborhood.

A.4 Root Node results

We report in Table 11 the time, in seconds, required to solve all the instances at the root
node, with a 2 h timelimit. We present results for three different runs of DDWsample

(run 1, run 2 and run 3) and the following static detectors configurations: GCG,
GCGHmetis and GCGFull .

Bounds obtained from this experiment are reported in Table 12 instead: for each
instance, we present the gap, in percentage, from the best known solution. We show
results for the three different runs of DDWsample, SAScomm , GCG, GCGHmetis and
GCGFull .
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Fig. 7 Sampling behavior profiling

A.5 Full results

Our final comparison is reported in Table 13, in which we show the gap from the
best known solution with no node limit. Timelimit for the optimization process is 5 h.
We present results for each instance and the following algorithms: GCG, GCGFull ,
DDWGCG , DDW , DDWsample and DDWortho.
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Table 11 Time, in seconds, of GCG configurations and DDWsample for solving instances at the root node.
We consider three different runs for DDWsample

Instances GCG GCGHmetis GCGFull DDWsample

Run 1 Run 2 Run 3

beasleyC2 8.41 13.74 8.52 85.88 70.29 82.70

berlin 34.01 34.10 33.35 84.88 70.07 70.68

bg512142 0.71 10.36 10.28 16.71 9.58 5.04

bienst1 3.70 2.00 1.93 316.08 81.43 29.13

cdc7-4-3-2 7238.48 7207.18 7256.03 7240.81 7200.91 7211.10

csched007 7.49 7344.06 7344.05 21.81 113.63 190.58

dg012142 7343.99 7343.99 7343.99 35.11 720.88 12.36

gen 5.90 1.47 1.34 29.95 19.78 14.46

mkc1 629.67 9.36 9.13 815.60 961.88 1062.04

n370b 16.68 101.30 16.66 116.88 101.57 103.93

nag 7343.98 5.97 6.05

neos-1420790 7344.20 7344.07 7344.13 524.85 7344.80 7344.02

neos-2294525-abba 7343.97 7343.97 7343.97 7343.95 44.23 789.00

neos-3009394-lami 7344.22 7344.00 7344.08 31.56 33.02

neos-4338804-snowy 6887.48 6596.36

newdano 3.81 2.36 2.34 236.90 707.09 427.80

ns1430538 6740.62 5238.69 6416.02 7342.03 7341.56 7341.30

ns1631475 77.12 1520.00 76.12 168.19 142.17 7344.07

piperout-d20 7339.23 7343.99 7343.99

queens-30 7343.86 7354.05 7343.89 7333.50 7343.84 7343.84

ran14x18-disj-8 2.31 7.47 7.55 1543.49 2477.24 1939.97

rococoC11-010100 7343.99 7343.99 7343.98 132.08 88.73 75.75

rococoC12-010001 7344.01 7344.01 7344.01 29.32 29.87 29.45

set3-09 7343.87 40.99 40.18 511.35 322.04 7341.57

set3-20 62.37 153.76 153.03 7341.86 279.61 260.32

siena1 7343.80 135.94 7343.85

tbfp-bigm 7344.01 7344.01

timtab1CUTS 2.45 227.12 185.78 1510.60 662.82 2431.88

tw-myciel4 7344.00 7344.53 7344.17 13.71 13.70 18.48

van 7343.64 7343.65 7343.64 7303.75 7302.53 8026.67
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Table 13 Bound profiling. We report for each configuration and each instance the percentage gap from the
best known solution after 5 h of computation

Instances GCG GCGFull DDWGCG DDW DDWsample DDWortho

beasleyC2 43.75 43.75 43.75 53.40 55.48 53.01

berlin 87.25 87.25 87.25 86.97 86.97 86.97

bg512142 21.60 19.54 20.72 21.63 21.63

bienst1 13.37 0.00 27.27

cdc7-4-3-2 3986.85 3986.85 3986.85 3986.85 3986.85

csched007 18.04 23.29 22.19 21.81 21.80 22.20

dg012142 67.06 67.06 67.06 67.06 67.06

gen 0.01 0.00 0.01 0.00 0.00 0.00

mkc1 0.76 0.76 0.76 0.76 0.76 0.76

n370b 17.20 17.20 17.23

nag 50.79 50.79

neos-1420790 5.72 5.72 5.72 5.72 5.72 5.72

neos-2294525-abba 51.37 51.37 51.37 51.22

neos-3009394-lami 88.31 88.31

neos-4338804-snowy 1.63 1.63 1.63

newdano 73.13 17.71 43.65 52.15 52.15 38.32

ns1430538 13.02 13.02 13.02 16.34 16.34 16.34

ns1631475 92.63 92.63 92.63 92.63 92.63 92.63

piperout-d20 14.57 14.57 14.57

queens-30 77.28 77.28 77.28 77.28 77.28 77.28

ran14x18-disj-8 5.97 4.73 5.84 4.95 4.95 4.73

rococoC11-010100 58.00 58.00 47.79 47.79 47.79

rococoC12-010001 21.83 21.83 20.13 20.13 20.13

set3-09 99.28 99.28 99.28 98.98 99.28 99.28

set3-20 93.51 93.51 93.10 93.25 93.29

siena1 1.89 1.89

tbfp-bigm 837.29 837.29

timtab1CUTS 18.36 12.58 11.97 13.20 13.20 11.83

tw-myciel4 60.00 60.00 60.00 50.00 50.00 50.00

van 62.32 62.32 58.12
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