Physics can be seen as a conceptual approach to scientific problems, a method for discovery, but teaching this aspect of our discipline can be a challenge. We report on a first-time remote teaching experience for a computational physics third-year physics laboratory class taught in the first part of the 2020 COVID-19 pandemic (March-May 2020). To convey a 'physics of data' approach to data analysis and data-driven physical modeling we used interdisciplinary data sources, with an openended 'COVID-19 data challenge' project as the core of the course. COVID-19 epidemiological data provided an ideal setting for motivating the students to deal with complex problems, where there is no unique or preconceived solution. Our results indicate that such problems yield qualitatively different improvements compared to close-ended projects, as well as point to critical aspects in using these problems as a teaching strategy. By breaking the students' expectations of unidirectionality, remote teaching provided unexpected opportunities to promote active work and active learning.

Remote teaching data-driven physical modeling through a COVID-19 open-ended data challenge / M. COSENTINO LAGOMARSINO, G. Pacifico, V. Firmano, E. Bella, P. Benzoni, J. Grilli, F. Bassetti, F. Capuani, P. Cicuta, M. Gherardi. - In: EUROPEAN JOURNAL OF PHYSICS. - ISSN 0143-0807. - 43:5(2022 Sep 01), pp. 055708.1-055708.20. [10.1088/1361-6404/ac79e1]

Remote teaching data-driven physical modeling through a COVID-19 open-ended data challenge

M. COSENTINO LAGOMARSINO
Primo
;
M. Gherardi
Ultimo
2022

Abstract

Physics can be seen as a conceptual approach to scientific problems, a method for discovery, but teaching this aspect of our discipline can be a challenge. We report on a first-time remote teaching experience for a computational physics third-year physics laboratory class taught in the first part of the 2020 COVID-19 pandemic (March-May 2020). To convey a 'physics of data' approach to data analysis and data-driven physical modeling we used interdisciplinary data sources, with an openended 'COVID-19 data challenge' project as the core of the course. COVID-19 epidemiological data provided an ideal setting for motivating the students to deal with complex problems, where there is no unique or preconceived solution. Our results indicate that such problems yield qualitatively different improvements compared to close-ended projects, as well as point to critical aspects in using these problems as a teaching strategy. By breaking the students' expectations of unidirectionality, remote teaching provided unexpected opportunities to promote active work and active learning.
interdisciplinary physics; instructional strategies; scientific reasoning and problem solving; epidemic modeling; computational physics; data analysis;
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore FIS/08 - Didattica e Storia della Fisica
11-ago-2022
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/946323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact