We consider the problem of determining a polyhedral conductivity inclusion embed-ded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [E. Beretta and E. Francini, Appl. Anal., 101 (2022), pp. 3536-3549] and [E. Beretta, E. Francini, and S. Vessella, SIAM J. Math. Anal., 53 (2021), pp. 4303--4327] in the two-dimensional case to the three-dimensional setting.
LIPSCHITZ STABLE DETERMINATION OF POLYHEDRAL CONDUCTIVITY INCLUSIONS FROM LOCAL BOUNDARY MEASUREMENTS / A. Aspri, E. Beretta, E. Francini, S. Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 54:5(2022), pp. 5182-5222. [10.1137/22M1480550]
LIPSCHITZ STABLE DETERMINATION OF POLYHEDRAL CONDUCTIVITY INCLUSIONS FROM LOCAL BOUNDARY MEASUREMENTS
A. AspriPrimo
Writing – Review & Editing
;
2022
Abstract
We consider the problem of determining a polyhedral conductivity inclusion embed-ded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [E. Beretta and E. Francini, Appl. Anal., 101 (2022), pp. 3536-3549] and [E. Beretta, E. Francini, and S. Vessella, SIAM J. Math. Anal., 53 (2021), pp. 4303--4327] in the two-dimensional case to the three-dimensional setting.File | Dimensione | Formato | |
---|---|---|---|
Aspri_et_al22.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
842.17 kB
Formato
Adobe PDF
|
842.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2202.12130v2.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.