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Abstract

We consider the problem of determining a polyhedral conductivity inclusion embedded in a ho-
mogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for
the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial
way the results obtained in [20] and [18] in the two-dimensional case to the three-dimensional setting.

1 Introduction

In this paper we analyze the nonlinear inverse problem of determining a polyhedron embedded in a three-
dimensional homogeneous isotropic conducting body from boundary measurements. More precisely, we
consider the conductivity equation

div (γD∇u) = 0 in Ω ⊂ R3, (1.1)

where
γD = 1 + (k − 1)χD,

with D a polyhedral inclusion strictly contained in a bounded domain Ω, and k 6= 1 is a given, positive
constant.

This class of conductivity inclusions appears in applications, like for example in geophysics exploration,
where the medium (Earth) under inspection contains heterogeneities in the form of rough bounded
subregions (for example subsurface salt or limestone bodies) with different conductivity properties [42].

We establish a Lipschitz stability estimate for the Hausdorff distance of polyhedral conductivity
inclusions in terms of the local Dirichlet-to-Neumann (DtN) map, and, as a byproduct, a uniqueness
result which is new in this general setting. An analogous, though less general result was obtained in [16]
in the case of the Helmholtz equation. We would like to point out that in principle it should be possible
to recover in a Lipschitz stable way both the polyhedral inclusion and the constant conductivity from
boundary data but in order to reduce the technical complexity of the proof we decided to treat the case
where the conductivity is fixed.

Lipschitz stability estimates are of key importance in practical applications. In fact, they provide
a useful framework for optimization when using iterative methods, see for example [22, 3] so that the
recovery of polyhedral interfaces becomes a shape optimization problem, see [19, 41] for the reconstruction
of polygonal and polyhedral inclusions.

There is a wide literature on Lipschitz stability for the inverse conductivity problem when unknown
coefficients depend on finitely many parameters and infinitely many measurements are available, see for
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example [13], [17],[6], [7], [27], [25] and [20, 18] while in the case of finitely many measurements we refer
to [5, 14] and to the more recent work [3, 1, 28, 29].

To our knowledge uniqueness and stability for general polyhedral conductivity inclusions from finitely
many measurements are an open issue. Unique determination from one suitably chosen measurement
has been proved in [15] restricting to the class of convex polyhedra. Logarithmic stability from one mea-
surement has been derived in [37] in the two-dimensional case for polygonal conductivity inclusions and
in [38] some preliminary results are obtained for the determination of a class of smooth two-dimensional
inclusions.

Also, we would like to mention that the results obtained recently in [1] in an abstract setting and
where Lipschitz continuity from finitely many measurements has been proved if the unknown belongs to
a suitable finite dimensional nonlinear manifold seem not to include the case of polygonal and polyhedral
conductivity inclusions.

On the other hand, in several applications, like the geophysical one, many measurements are at
disposal on some part of the boundary, justifying the use of the local Dirichlet-to-Neumann map [21].

We would like to emphasize that the result we obtain is not at all a straightforward extension of the
two-dimensional results obtained previously in [20] and [18] since it requires to deal with the more complex
three-dimensional geometric setting. In fact, our main result relies on some preliminary rather technical
but crucial geometric properties on admissible polyhedra D ∈ D satisfying minimal a priori assumptions
of Lipschitz type. In particular, for two polyhedra in D we are able to compare the Hausdorff distance
of their boundaries and a modified distance defined in Section 3, Definition 3.3. These properties are
then used to derive a first rough stability estimate of logarithmic type relating the Hausdorff distance
between the boundaries of the polyhedra and the corresponding DtN maps. The stability estimate is
obtained along the lines proposed in [8] and [9]: computing the difference of the local DtN along a pair
of singular solutions for the conductivity operator with singularities y, z ∈ R3 \ Ω close to ∂Ω exploiting
unique continuation and regularity properties of this function, denoted by S(y, z), and finally coupling
upper and lower bounds of S(y, z).

Furthermore, as in [18], a crucial step to establish our Lipschitz stability is to prove smoothness of
the local DtN map and to establish a lower bound of the directional derivative of the local DtN map.
We construct an ad-hoc Lipschitz vector field, use a distributed representation formula of the derivative,
derived in [19], and integrate by parts far from edges and vertices taking advantage of regularity properties
of solutions to (1.1) close to smooth interfaces and avoiding the complex singular behaviour solutions to
(1.1) exhibit close to vertices and edges. Finally, collecting the results of Sections 4 and 5 in Section 6
we prove our main result.

It would be interesting to extend the results of stability to the more general geometric configuration
where the reference domain Ω is in the form of an inhomogeneous layered medium. This kind of geo-
metrical setting originates from applications, for example, in geophysical exploration, where the medium
under inspection (for example the Earth) is layered and contains heterogeneities in the form of rough
bounded sub-regions with different conductivity properties, [26]. Moreover, the theoretical results in this
paper contain the building blocks towards successful numerical reconstruction procedures based on, for
example, shape derivative and level set techniques, as in [4, 24, 32, 33, 34, 35].

The plan of the paper is the following: In Section 2, we list the main a priori assumptions on the
reference medium, the admissible polyhedral inclusions D ∈ D, the conductivity parameter and the data
and state our main result, Theorem 2.5. In Section 3, we collect and prove the main geometric properties
on polyhedra belonging to the class D that are crucial to derive our main stability result. In Theorem
4.5 of Section 4, we derive a first rough logarithmic stability estimate. In Section 5, we analyse the
differentiability properties of the local DtN map, establish a formula for the directional derivative, prove
its continuity and derive a lower bound (Proposition 5.5). Finally, in Section 6, collecting the results of
Section 4 and 5, we prove our main stability result (Theorem 2.5). The appendix collects some technical
proofs.
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Notation

We begin by setting notation that we will use throughout and recalling some of the needed definitions.
Given P ∈ R3, and R > 0, we denote by BR(P ) the ball of center P and radius R, that is

BR(P ) := {x ∈ R3 : |x− P | < R}, (1.2)

and by B′R(P ) a disc centered at P with radius R, contained in a specific plane, which will be specified
each time. We omit P when the center of the ball is in the origin.

We utilize standard notation for inner products, that is x · y =
∑
i xiyi. Given A and B bounded sets

in R3, we recall that

dist(x,A) = inf{|x− a| : a ∈ A}, and dist(A,B) = inf{|a− b| : a ∈ A, b ∈ B}, (1.3)

and we define the Hausdorff distance between two bounded and closed sets C and D in R3 as

dH(C,D) = max

{
max
x∈C

dist(x,D),max
x∈D

dist(x,C)

}
. (1.4)

With Int(C) we denote the set of interior points of C. Given two closed simply connected and bounded
flat surfaces F1 and F2 contained in R3, and assuming that F1 ∩ F2 =: σ, where σ is a segment and such
that σ 6= ∅, then we denote by IntR2 (F1) and IntR (σ) the interior of the set relative to the plane and
the line that contain F1 and σ, respectively.

2 Assumptions and main result

Let us start setting up the definition of a polyhedron, the notation for faces and vertices of the polyhedron
and the a-priori assumptions that are needed in order to derive our main result.

Definition 2.1. A closed subset D ⊂ R3 is a polyhedron if:

D is homeomorphic to a ball in R3; (2.1)

the boundary ∂D is given by

∂D =

H⋃
j=1

FDj (2.2)

where each FDj is a closed simply connected plane polygon (that is called a face of D) and

IntR2

(
FDi
)
∩ IntR2

(
FDj
)

= ∅ for i 6= j. (2.3)

For i 6= j, σDij = FDi ∩ FDj is called an edge of D if IntR
(
σDij
)
6= ∅. The non empty intersection of two

edges is called a vertex V D of D.

2.1 Assumptions on the polyhedral inclusion and on the reference medium

We consider a class of non degenerate polyhedra: let

r0, R0, θ0, M0

be given positive numbers such that θ0 ∈ (0, π/2) and r0 < R0.
Let Ω ⊂ R3 be a bounded domain such that

diam (Ω) ≤ R0, (2.4)

where diam(Ω) denotes the diameter of Ω.
We say that a polyhedron D ⊂ Ω is in D = D(r0, R0, θ0,M0) if the following assumptions hold.
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Strict Inclusion:
dist(D, ∂Ω) ≥ r0. (2.5)

Dihedral angle non-degeneracy: at each edge of D the angle between the intersecting faces has width
α such that

α ∈ (θ0, π − θ0) ∪ (π + θ0, 2π − θ0). (2.6)

Face non-degeneracy: for any polygonal face FD there exists x0 ∈ FD such that

B′r0(x0) ⊂ FD, (2.7)

where B′r0(x0) is contained in the plane containing FD.

Edge non-degeneracy: for each edge σDij of D

length
(
σDij
)
≥ r0. (2.8)

Face angle non-degeneracy: each internal angle β of each face FD satisfies

β ∈ (θ0, π − θ0) ∪ (π + θ0, 2π − θ0). (2.9)

Lipschitz regularity

Ω \D is connected and has Lipschitz boundary with constants r0 and M0, (2.10)

that is: for every P ∈ ∂(Ω\D) there is a rigid transformation of coordinates under which P ≡ 0
and

(Ω \D) ∩RM0,r0 = {(x1, x2, x3) : Ψ(x1, x2) < x3}
where

RM0,r0 = [−r0, r0]2 × [−2M0r0, 2M0r0]

and Ψ : [−r0, r0]2 → R is such that Ψ(0, 0) = 0 and

|Ψ(x1, x2)−Ψ(x′1, x
′
2)| ≤M0

√
(x1 − x′1)2 + (x2 − x′2)2,

for every x1, x2, x′1, x′2 ∈ [−r0, r0].

Remark 2.2. The number of vertices V D, edges σDij and faces FDj of a polyhedron in D is bounded from
above by a constant N0 depending only on r0, R0, and M0.

Remark 2.3. Recall that (2.10) is not implied by the previous assumptions. Figure 1 shows a polyhedron
satisfying (2.6) – (2.9) but not (2.10) at P .

Remark 2.4. Some of the previous assumptions are technical and instrumental to derive some of the
proofs. It might be possible, in principle, that using other techniques these assumptions can be relaxed.

Let
γD := 1 + (k − 1)χD, (2.11)

where χD is the characteristic function of D ∈ D, and k is a positive constant such that

min(k, |k − 1|) ≥ κ0. (2.12)

Finally let us state the assumptions on the part of the boundary on which we measure our data. Let Σ
be an open portion of ∂Ω with size at least r0, i.e. we assume there exists at least one point PΣ ∈ Σ such
that

dist(PΣ, ∂Ω \ Σ) ≥ r0. (2.13)

In the sequel, we will refer to the set of parameters

r0, R0, θ0, M0, κ0

as the a priori data.
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Figure 1: An example of a polyhedron satisfying (2.6) – (2.9) but not (2.10) at P . We refer the reader
to [23, Example 3.7] for a detailed explanation, by using the uniform cone property, of the fact that D is
not a Lipschitz domain.

2.2 The local Dirichlet to Neumann map

We define

H
1
2
co(Σ) :=

{
ϕ ∈ H 1

2 (∂Ω) : supp ϕ ⊂ Σ

}
,

and with H
− 1

2
co (Σ) its topological dual.

Given f ∈ H
1
2
co(Σ), we consider the boundary value problem{

div(γD∇u) = 0 in Ω

u = f on ∂Ω.
(2.14)

Let us denote by ΛΣ
γD the local DtN map, that is the map

ΛΣ
γD : H

1
2
co(Σ)→ H

− 1
2

co (Σ)

f → ∂u

∂ν

⌊
Σ

(2.15)

where u ∈ H1(Ω) is the solution to (2.14), and ν is the outer unit normal vector to ∂Ω. The norm of the

local DtN map in the space of linear operators L
(
H

1
2
co(Σ), H

− 1
2

co (Σ)
)

is defined by

‖ΛΣ
γD‖? := sup

{
‖ΛΣ

γDϕ‖H−
1
2

co (Σ)
/‖ϕ‖

H
1
2
co(Σ)

: ϕ 6= 0

}
.

As in [10] the DtN map can be defined as the operator characterized by

〈
ΛΣ
γDf, φ

〉
=

∫
Ω

γD∇u · ∇v dx,

for all φ, f ∈ H
1
2
co(Σ), where u ∈ H1(Ω) is the solution to (2.14), and v is any H1(Ω)-function such that

vbΣ= φ.
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2.3 The main result

Recalling the definition of the Hausdorff distance, see (1.4), we state here our main Lipschitz stability
result:

Theorem 2.5. Let Ω be a bounded domain with Lipschitz boundary satisfying (2.4), let D0 and D1 ∈ D
(that is they satisfy assumptions (2.5)-(2.10)), let k satisfy (2.12) and let Σ be an open portion of ∂Ω
satisfying (2.13). Then, there exists C depending only on the a priori data such that

dH (∂D0, ∂D1) ≤ C
∥∥∥ΛΣ

γD0
− ΛΣ

γD1

∥∥∥
∗
, (2.16)

where
γDi = 1 + (k − 1)χDi for i = 0, 1.

The proof of Theorem 2.5 is postponed at Section 6, after proving some intermediate results based
essentially on the following steps and strategy:

1. Prove that it always exists a suitable tubular neighborhood connecting any point on ∂Ω to a special
interior point of the face of one of the two polyhedra D0 or D1, without crossing D0 ∪D1. To this
aim, we introduce a specific distance (called “modified distance”) (see Definition 3.3) and exploit
the connection between the modified and the Hausdorff distances (see Proposition 3.4).

2. The results of the previous point allow us to establish a rough (logarithmic) stability estimate of
the Hausdorff distance between D0 and D1 in terms of the difference between the corresponding
DtN map, see Theorem 4.5. This is obtained by propagating the smallness of data from Σ along
the tubular neighborhood.

3. The logarithmic stability estimate implies that if two DtN maps are close enough, the two polyhedra
have the same number of vertices, faces and edges, see Proposition 3.9. When this happens, it is
possible to define a regular vector field that transforms D0 into D1. We also prove smoothness of
the local DtN map and establish a lower bound of its derivative with respect to the movement of
the polyhedron

4. The regularity of the DtN map and the lower bound allow us to improve the stability estimates and
to get Theorem 2.5.

3 Some useful geometric results on polyhedra

In this section we collect some geometric results on polyhedra in the class D. We first establish the relation
between the Hausdorff distance of two polyhedra in D and the Hausdorff distance of their boundaries, see
Proposition 3.2. Afterwards, we consider a modified distance between two polyhedra (see Definition 3.3)
that was introduced in [2, 9] and establish an upper bound of the Hausdorff distance of the boundaries of
two polyhedra in terms of their modified distance, see Proposition 3.4. This last property together with
the main result of this section, that is Proposition 3.8, will be crucial in Section 4 to establish our first
logarithmic stability estimate.

Proposition 3.8 here corresponds to Lemma 4.2 in [9] where it is stated under the assumption of
inclusions with C1,α boundaries; this regularity assumption allows to show that the union of two such
inclusions has Lipschitz boundary. Unfortunately, this is not the case for polyhedra in D. For this reason,
in order to prove Proposition 3.8, we have to rely on a fine result from [39] stating that if two polyhedra
in D are close enough, in some neighborhood of some special point in the interior of one of the faces, the
boundaries of the two polyhedra are relative graphs of affine functions (see Proposition 3.6).

The last key geometric result, contained in Proposition 3.9, states that if two polyhedra in D are close
enough, then they have the same number of vertices, edges and faces.
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3.1 Metric results

In this subsection we use some results from [39]. For this, we observe that our class of polyhedra D is a
subset of the class of polyhedra Ap,0(h) (defined in [39]) for some h > 0 depending only on the a priori
data.

Let us set some useful notation. Given P ∈ R3, a direction ν ∈ R3, l > 0 and ϑ ∈ (0, π/2), we denote
by

C(P, ν, l, ϑ) =
{
x ∈ R3 : (x− P ) · ν ≥ |x− x| cosϑ, |x− P | ≤ l

}
(3.1)

the closed cone with vertex P , axis ν, width ϑ, and apothem l.

Remark 3.1. By assumption (2.10), for each P ∈ ∂ (Ω \D) there exist a direction ν, a positive l and
ϑ ∈ (0, π/2) depending only on the a priori data, such that

C(P, ν, l, ϑ) ⊂ (Ω \D)

and, if P ∈ ∂D
C(P,−ν, l, ϑ) ⊂ D.

The proposition below (that corresponds to Proposition 2.4 in [39] to which we refer for the proof)
establishes the equivalence in D between dH(D0, D1) and dH(∂D0, ∂D1).

Proposition 3.2. Let D0 and D1 ∈ D, then there is a positive constant C1 > 1 depending on the a
priori data only such that

C−1
1 dH(∂D0, ∂D1) ≤ dH(D0, D1) ≤ C1dH(∂D0, ∂D1). (3.2)

For D0 and D1 ∈ D, let G be the connected component of Ω \ (D0 ∪D1) which contains ∂Ω, and let

ΩG = Ω \ G. (3.3)

Since the value of dH(∂D0, ∂D1) can be attained at some point of ∂D0 ∪ ∂D1 that is not necessarily on
∂ΩG (see, for example, the configuration in Figure 2) and, hence, cannot be reached from ∂Ω without
crossing ∂D0 ∪ ∂D1, we introduce a modified distance as was defined in [9].

Definition 3.3.

dµ(D0, D1) = max

{
max

x∈∂D0∩∂ΩG
dist(x,D1), max

x∈∂D1∩∂ΩG
dist(x,D0)

}
. (3.4)

We point out that this is not a metric because, in general, the triangle inequality doesn’t hold. It is
straightforward to show, see [9], that

dµ(D0, D1) ≤ dH(∂D0, ∂D1). (3.5)

In general, dµ does not bound from above the Hausdorff measure, but, in the class D the following result
that will be crucial for deriving the stability estimates in Section 4, holds:

Proposition 3.4. There is a constant C2 > 1 depending only on the a priori data, such that, for D0,
D1 ∈ D

dH(∂D0, ∂D1) ≤ C2dµ(D0, D1).

In order to prove Proposition 3.4 we need the following preliminary result:

Lemma 3.5. Let D ∈ D. Then, for every P ∈ ∂D there exists a curve c in Ω \D connecting P to ∂Ω
such that

|z − P | ≤ C2 dist(z,D), ∀z ∈ c,

where C2 > 1 depends only on the a priori data.
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(a) Polyhedron D0 in
green.

(b) Polyhedron D1 in
pale blue.

(c) A possible configuration. The
two polyhedra are overlapping.

(d) The two distances. For
dH we provide all the points
where the longest distance
between the two sets occurs.

Figure 2: A 2D-section of a possible geometrical setting. Note that Figure 2d represents the case when
the value of dH(∂D0, ∂D1) is attained at some point that is not on ∂ΩG .

This lemma corresponds to Proposition 3.3 in [8] and to Lemma 4.1 in [9] for C1,α inclusions. Here,
we prove it for D ∈ D.

Proof of Lemma 3.5. By Assumption (2.10) we can apply Lemma 5.5 in [11], hence, there exists a positive
number a depending only on the Lipschitz constant M0 such that the set

EDt =
{
x ∈ Ω \D : dist(x, ∂D) > t

}
(3.6)

is connected for t ≤ ar0.
Let P ∈ ∂D; by Remark 3.1, there exists a cone C(P, ν, l, ϑ) ⊂ (Ω \D). By easy calculations we can

see that, by choosing

τ0 =
l

1 + sinϑ
,

the point yτ0 = P + τ0ν satisfies dist (yτ0 , ∂C(P, ν, l, ϑ)) = τ0 sinϑ. Let us now take t0 = min {ar0, τ0}.
Since t0 ≤ τ0, we have

dist (yt0 ,Ω \D) ≥ dist (yt0 , ∂C(P, ν, l, ϑ)) ≥ t0 sinϑ,

hence yt0 ∈ EDt0 sinϑ. Since t0 sinϑ < ar0, then EDt0 sinϑ is connected.

Let c′ be a curve in EDt0 sinϑ that connects yt0 to ∂Ω and let c = c′ ∪ [yt0 , P ], where [yt0 , P ] is the line
segment from P to yt0 .

If z ∈ c′, then dist(z, ∂D) ≥ t0 sinϑ, hence

|z − P | ≤ diam(Ω) ≤ R0 ≤
R0

t0 sinϑ
dist(z, ∂D).
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If z ∈ [yt0 , P ], then dist(z, ∂D) ≥ |z − P | sinϑ. In both cases

|z − P | ≤ max

{
R0

t0 sinϑ
,

1

sinϑ

}
, ∀z ∈ c.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Let P ∈ ∂D0, we have two different cases

(i) P ∈ ∂D0 ∩ ∂ΩG ;

(ii) P ∈ ∂D0 \ ∂ΩG .

In case (i) we have that P /∈ Int(D1), hence

dist(P, ∂D1) = dist(P,D1) ≤ dµ(D0, D1).

In case (ii) we have P ∈ Int(ΩG). By Lemma 3.5, let c be a curve such that

c ⊂ Ω \D0

connects P to ∂Ω and
|z − P | ≤ C2dist(z,D0), ∀z ∈ c. (3.7)

Since P ∈ Int(ΩG), c intersects ∂ΩG and, since

(c ∩ ∂D0) \ {P} = ∅,

then
(c ∩ ΩG) ∩ ∂D1 6= ∅.

Let z ∈ c ∩ ∂ΩG ∩ ∂D1. We have

dist(z,D0) ≤ sup
x∈∂D1∩∂ΩG

dist(x,D0) ≤ dµ(D0, D1)

and, by (3.7), we have
1

C2
|z − P | ≤ dist(z,D0) ≤ dµ(D0, D1). (3.8)

Since z ∈ ∂D1 and by (3.7)
dist(P, ∂D1) ≤ |z − P |, (3.9)

hence, from (3.8) and (3.9) we have

dist(P, ∂D1) ≤ C2dµ(D0, D1), ∀P ∈ ∂D0, (3.10)

and, by symmetry,
dist(Q, ∂D0) ≤ C2dµ(D0, D1), ∀Q ∈ ∂D1. (3.11)

Inequalities (3.10) and (3.11) imply that

dH(∂D0, ∂D1) ≤ C2dµ(D0, D1).
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3.2 A useful geometric construction

The aim of this subsection (see Proposition 3.8) is the construction of a special tubular set contained in
G that connects a special point on ∂ΩG to any point on ∂Ω (and particularly any point on Σ) and has a
fixed positive distance from the rest of the boundaries of the two polyhedra. In this set we will be able
to propagate the information on the DtN map up the the boundary of ∂ΩG .

In order to construct this tubular set, we need some information on the position of the boundaries of
the two polyhedra when they are sufficiently close. Proposition 3.6 below, that is the adaptation to our
setting of Proposition 6.2 in [39], states that, in a neighborhood of some point, the boundaries of the two
polyhedra are relative graphs of affine functions that are not too close (see (3.12)) .

Proposition 3.6. There exist positive constants k1 ≤ k0 ≤ k0, K, K1 and L1 depending only on the a
priori data, such that, if D0, D1 ∈ D and

dH(D0, D1) ≤ k0r0,

then there exist P0 ∈ ∂D0 and P1 ∈ ∂D1 such that the following conditions are satisfied. Up to a rigid
transformation P0 = (0, 0, 0), P1 = (0, 0, a1) and

∂D0 ∩Bk0r0
=
{

(x1, x2, x3) ∈ Bk0r0
: x3 = Φ0(x1, x2)

}
,

∂D1 ∩Bk0r0
=
{

(x1, x2, x3) ∈ Bk0r0
: x3 = Φ1(x1, x2)

}
,

where Φ0 and Φ1 are Lipschitz functions with Lipschitz constant bounded by L1 and such that Φ0(0, 0) = 0
and Φ1(0, 0) = a1.

Furthermore, on B′k1r0
=
{

(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ k2
1r

2
0

}
we have

Φ0(x1, x2) = l01x1 + l02x2, Φ1(x1, x2) = l11x1 + l12x2 ∀(x1, x2) ∈ B′k1r0

S0 =
{

(x1, x2,Φ0(x1, x2) : (x1, x2) ∈ B′k1r0

}
⊂ ∂D0,

S1 =
{

(x1, x2,Φ1(x1, x2) : (x1, x2) ∈ B′k1r0

}
⊂ ∂D1,

(l01 − l11)2 + (l02 − l12)2 ≤
(
KdH(D0, D1)

r0

)2

,

|a1| ≤ KdH(D0, D1),

and
|Φ0(x1, x2)− Φ1(x1, x2)| ≥ K1(dH(D0, D1))3, ∀(x1, x2) ∈ B′k1r0 . (3.12)

Remark 3.7. Notice that k0 can be chosen such that D0 and D1 are on the same side with respect to S0

and S1.
We call D0 the polyhedron for which the point P0 ∈ ∂ΩG.

Let us now introduce the description of a tubular neighborhood of a curve as was introduced in [12, 9].
Let P ∈ ∂ΩG and let ν be a unit direction such that the line segment [P, P+dν] is contained in G for some
d > 0. Let P be a point on ∂Ω, consider a curve c joining P to P + dν and define, for some R ∈ (0, d)

VR(c) =
⋃
Q∈c

BR(Q)
⋃
C
(
P, ν,

d2 −R2

d
, arcsin

R

d

)

where C is the cone defined in (3.1).
In the next proposition, we show that such a set VR(c) can be constructed in G, see, for example,

Figure 3.
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Figure 3: A 2D-section of a possible configuration with the representation of VR(c) and c connecting P
to P + dν.

Proposition 3.8. If D0, D1 ∈ D, there exist constants C3, d, R (with R < d) and R1 depending only
on the a priori data and there is a point P ∈ ∂D0 ∩ ∂ΩG such that

C3d
3
µ(D0, D1) ≤ dist(P,D1), (3.13)

dist(P, {σD0
ij }i 6=j) ≥ R1, (3.14)

and such that, given any point P ∈ ∂Ω there is a curve c joining P to P + dν, where ν is the unit outer
normal to ∂D0, such that

VR(c) ⊂ G. (3.15)

Proof. Let us denote by dµ = dµ(D0, D1) and let

d1 =
r0

2C1C2
min {k1, a} .

We distinguish two cases.
Case 1: dµ ≥ d1.

Note that, by Lemma 5.5 in [11], the sets ED0
t and ED1

t (defined as in (3.6)) are connected for t ≤ d1 ≤ ar0.

Let P̃ be a point on ∂D0 ∩ ∂ΩG be the point that satisfies

dµ(D0, D1) = dist(P̃ ,D1).

Let P be a point in the face containing P̃ (or in one of the faces containing P̃ ) such that

dist(P, {σD0
ij }i 6=j) ≥

d1

4
sin

(
θ0

2

)

11



and

dist(P,D1) ≥ d1

2
. (3.16)

Consider the outer cone to D0 at P (see Remark 3.1). Since P is internal to a face, the direction ν can
be chosen orthogonal to ∂D0.

The point P + d1

4 ν belongs to E
d1
2

D1
and also to E

d1
4 sinϑ

D0
(with ϑ from Remark 3.1).

Then, given any point P ∈ ∂Ω there is a curve c joining P + d1

4 ν to P with distance bigger than
d1

4 sinϑ from ΩG .
Moreover we trivially have

d3
µ(D0, D1) ≤ (diam(Ω))3 ≤ R3

0,

hence, by (3.16)

d3
µ(D0, D1) ≤ R3

0

2dist(P,D1)

d1

that gives (3.13).
Case 2: dµ < d1

Since by Proposition 3.2 and Proposition 3.4

dH(D0, D1) ≤ C1C2dµ(D0, D1)

we have
dH(D0, D1) ≤ C1C2d1 ≤ k0r0

so that the assumptions of Proposition 3.6 hold true.
Let now P0 be the point in Proposition 3.6 and let ν0 be the normal direction to S0 (defined in

Proposition 3.6). Notice that, due to (3.12) the cone of C(P0, ν0, k1r0, π/2) is contained in G.
Let us take the point P0 + k1r0

2 ν0 and notice that

dist

(
P0 +

k1r0

2
ν0, D0

)
=
k1r0

2
.

Let t0 = min{k1r0
2 , ar0} so that ED0

t0 is connected.

Let c be a curve joining P0 + k1r0
2 ν0 to a point P ∈ ∂Ω and such that c ⊂ ED0

t0 . By choosing d = k1r0
2

and R = t0/4 the tubular set VR(c) (starting from P = P0) is contained in Ω \D0.
Now, since

dH(D0, D1) ≤ C1C2d1 ≤
t0
2

the set VR(c) is contained also in Ω \D1, and (3.15) follows.
Inequalities (3.13) and (3.14) (for P = P0 and R1 = k0r0) are a straightforward consequence of (3.12),

(3.5) and (3.2).

3.3 Estimating the distance between vertices of close polyhedra

We now state and prove the main result of the section: if two polyhedra in D are close enough, then they
have the same number of vertices (and faces and edges).

Proposition 3.9. There exist two positive constants δ0 and C depending only on the a priori data, such
that, if for some D0 and D1 in D,

dH (∂D0, ∂D1) ≤ δ0,

12



then D0 and D1 have the same number N of vertices
{
V D0
i

}N
i=1

and
{
V D1
i

}N
i=1

, respectively, which can

be ordered in such a way that

dist
(
V D0
i , V D1

i

)
≤ CdH (∂D0, ∂D1) . (3.17)

Moreover, for each edge or face in D0 there is an edge or a face in D1 with corresponding vertices.

Proof. The proof of Proposition 3.9 follows the same idea of the proof of Proposition 3.3 in [20] in the
two dimensional setting. In that case we show that, if the Hausdorff distance between the boundaries is
small enough, a vertex of one of the two polygons cannot be too far from vertices of the other polygon
without violating the a priori assumptions.

For polyhedra the proof is more involved and it is divided in two steps: in the first step we show that
the distance between an arbitrary vertex in D0 from the edges of D1 can be bounded by CdH (∂D0, ∂D1)
where C depends only on the a priori data. The main idea to prove this consists in showing that a small
neighborhood of a face of one polyhedron cannot contain a vertex of the second polyhedron since the
length of edges and width of angles are bounded from below by the a priori data.

In the second step, we show that an arbitrary vertex of D0 has distance smaller than CdH (∂D0, ∂D1)
from a vertex in D1. This time the idea is that a small neighborhood of a pair of intersecting faces cannot
contain a vertex that does not violate assumption (2.9). Since assumption (2.8) holds, if dH (∂D0, ∂D1)
is small enough there is a one to one correspondence between vertices of the two polyhedra.

For sake of brevity let us denote by

dH = dH (∂D0, ∂D1) , (3.18)

and let
(∂D1)

(dH)
=
{
x ∈ R3 : dist(x, ∂D1) ≤ dH

}
.

By definition of Hausdorff distance it follows that ∂D0 ⊂ (∂D1)
(dH)

.

We can also assume that (Ω)dH \ (∂D1)
(dH)

is connected by [9, Lemma 5.5], where

(Ω)dH = {x ∈ Ω : dist(x, ∂Ω) > dH} .

Let us choose an arbitrary vertex in D0 and let us denote it by V D0
1 . Let FD1

i be a face of D1 such
that

dist(V D0
1 , FD1

i ) ≤ dH

(notice that such a face exists because V D0
1 ∈ (∂D1)

(dH)
).

Let us choose our coordinate system such that V D0
1 = (0, 0, 0), and FD1

i lies on the plane {x3 = −c}
for 0 ≤ c ≤ dH .

We now want to show that there exists a vertex (say V D1
1 ) of the polygon FD1

i such that

dist(V D0
1 , V D1

1 ) ≤ CdH

where C depends only on the a priori assumptions.
First step. Let us show that there exists C0, depending only on the a priori data, such that, if dH is

small enough, then
dist((0, 0,−c), ∂FD1

i ) ≤ C0dH (3.19)

and, hence, since 0 ≤ c ≤ dH
dist(V D0

1 , ∂FD1
i ) ≤ (C0 + 1)dH . (3.20)

In order to prove (3.19), let us assume that

dist((0, 0,−c), ∂FD1
i ) > C0dH (3.21)

13



and show that there is a constant C0 such that (3.21) leads to a contradiction for sufficiently small dH .
By assumption (2.9), the cones with basis B′C0dH

((0, 0,−c)) and height C0dH tan θ0 do not intersect

other faces of D1 except FD1
i .

Let us take C0 >
1+cos θ0

sin θ0
. It is easy to show that the ball centered at V D0

1 with radius C1dH , where

C1 = 1
2 (C0 sin θ0 − cos θ0 − 1) does not intersect the set{

x ∈ R3 : dist
(
x, ∂D1 \ FD1

i

)
≤ dH

}
.

Let us now take dH such that C1dH < r0. This implies that the edges of D0 that contain V D0
1 , that are

contained in (∂D1)
(dH)

, by definition of the Hausdorff measure, intersect ∂BC1dH

(
V D0

1

)
at points that

lie between the planes π+ = {x3 = 2dH} and π− = {x3 = −2dH} (as a matter of fact the region on the
ball that can contain these intersections is smaller, but we choose this one to have a symmetric one).

Figure 4: First step of the proof. Note that if the strip is too small then the vectors are not all contained
in it.

Let σD0
ij be one of the edges of D0 that contains V D0

1 and let us denote by v the position vector that

represents the intersection of this edge with the sphere BC1dH

(
V D0

1

)
.

Let u and w the position vectors with tips at the intersection of the edges of the faces of D0 adjacent

to σD0
ij with ∂BC1dH

(
V D0

1

)
We have that

|u| = |v| = |w| = C1dH ,

|u3|, |v3|, |w3| ≤ 2dH .
(3.22)

Let θij denote the internal angle at the edge σD0
ij . We now show that, if C1 (and, hence, if C0) is big

enough and C1dH < r0, then
| cos θij | > cos θ0

in contradiction with assumption (2.9).
Let us consider the unit normal direction to the faces intersecting at σD0

ij :

t =
u× v
|u× v|

and τ =
v × w
|v × w|

. (3.23)

Notice that, by (3.22),

|u× v|2 ≤ (u2
1 + u2

2 + v2
1 + v2

2)(u2
3 + v2

3) + (u1v2 − u2v1)2

≤ 16C2
1d

4
H + t23|u× v|2,
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so that
(1− t23)|u× v|2 ≤ 16C2

1d
4
H . (3.24)

From assumption (2.6) and (3.22) we have

|u× v|2 = |u|2|v|2| sin ûv|2 ≥ (C1dH)4 sin2 θ0. (3.25)

From (3.24) and (3.25),

1− t23 ≤
16

C2
1 sin2 θ0

,

hence

1− |t3| ≤
16

C2
1 sin2 θ0

(3.26)

and, in the same way,

1− |τ3| ≤
16

C2
1 sin2 θ0

. (3.27)

Now, by (3.26) and (3.27),

| cos θij | = |t · τ | ≥ |t3||τ3| − |t′||τ ′| (3.28)

= |t3||τ3| −
√

(1− |t3|2)(1− |τ3|2) ≥ 1− 48

C2
1 sin2 θ0

. (3.29)

For this reason, if

C2
1 >

48

(1− cos θ0) sin2 θ0

, (3.30)

we have that
| cos θij | > cos θ0

that contradicts (2.9).
So, let us take, for example

C0 = 2

{
8
√

3√
1− cos θ0 sin2 θ0

+
1 + cos θ0

sin θ0

}
.

With this choice, (3.30) holds, hence we have a contradiction for dH < r0
C1

. This implies that, for dH < r0
C1

,
(3.19) and (3.20) hold.

Second step. Since (3.20) holds, there is an edge σD1
ij such that

dist
(
V D0

1 , σD1
ij

)
≤ (C0 + 1)dH .

Let V D1
1 and V D1

2 be the endpoints of σD1
ij .

We want to show that there is C2 depending only on the a priori data, such that, for dH small enough,
either

dist
(
V D0

1 , V D1
1

)
≤ C2dH or dist

(
V D0

1 , V D1
2

)
≤ C2dH .

Again, we proceed by contradiction and assume that

dist
(
V D0

1 , V D1
1

)
> C2dH and dist

(
V D0

1 , V D1
2

)
> C2dH .

and get a contradiction with the a priori assumptions on D, see Figure 5.
Let FD1

j be such that FD1
i ∩ FD1

j = σD1
ij .
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(a) Geometrical setting.

(b) A partial dH -neighborhood of
the two faces FD1

i and FD1
j .

(c) The two edges in blue of the
face FD0

1 .

Figure 5: A sketch of the geometrical setting for the second step of the proof.

As in the first step, by elementary calculations, there is a ball centered at V D0
1 of radius C3dH , where

C3 depends on the a priori data and on C2, such that

BC3dH

(
V D0

1

)
∩
{
x ∈ R3 : dist

(
x, ∂D1 \

(
FD1
i ∪ FD1

j

))
≤ dH

}
= ∅.

This implies that the intersections of all the edges containing V D0
1 with such ball lie in a dH -neighborhood

of the two faces. From the first step, we know that, it is not possible to have all these intersections in
the neighborhood of only one of the two faces. Hence, there is a face (say FD0

1 ) containing V D0
1 that has

one edge in the neighborhood of FD1
i and one in FD1

j . With calculations similar to the ones in the first
step, that we omit for sake of shortness, it is possible to show that, for C2 big enough, a part of the face

FD0
1 does not belong to (∂D1)

(dH)
contradicting the definition of the Hausdorff distance.

4 A first rough stability estimate

In this section we derive a rough stability estimate of polyhedral inclusions measured in the Hausdorff
distance in terms of the operator norm of the partial DtN map. As shown in the previous section, this
estimate is crucial to prove that the two polyhedra have the same vertices which can be ordered in such
a way that they are close, see Proposition 3.9.

4.1 On some properties of the Green’s function

Let us first recall Alessandrini’s identity. Let u0 and u1, with supp(u0b∂Ω), supp(u1b∂Ω) ⊂ Σ, be solutions
of the equations

div(γDi∇ui) = 0, i = 0, 1,

and ΛΣ
γDi

the corresponding local DtN maps, for i = 0, 1. Then, it holds

〈
(ΛΣ

γD0
− ΛΣ

γD1
)u0

⌊
Σ
, u1

⌊
Σ

〉
=

∫
Ω

(k − 1)(χD0
− χD1

)∇u0 · ∇u1 dx, (4.1)

where χDi , for i = 0, 1, is the characteristic function of Di.
As in [10, 11], we introduce an augmented domain Ω], attaching to Ω an open set Ω0, in its exterior,

whose boundary intersects ∂Ω on an open portion Σ0 b Σ such that Σ0 has size which is a fraction of r0.
Let us choose Ω0 in such a way that Ω] := Ω ∪ Σ0 ∪ Ω0 has the following properties: there exist r1, M1,
depending only on r0, and M0 such that

1. Ω] is open, connected with Lipschitz boundary with constants r1, M1;
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2. there exists P0 ∈ Ω0 such that
B2r1(P0) ⊂ Ω0. (4.2)

We extend the conductivity to be 1 in Ω0 still denoting it with γD.
Let Γ(x, y) be the fundamental solution of the Laplace operator, that is the function

Γ(x, y) =
1

4π

1

|x− y|
,

and with G] the Green’s function, solution to{
div(γD∇G](·, y)) = −δ(· − y) in Ω]

G](·, y) = 0 on ∂Ω],
(4.3)

where δ(·−y) is the Dirac distribution centered in y. Let us recall some properties of the Green function.
For all x, y ∈ Ω], x 6= y, it holds

G](x, y) =G](y, x)

0 < G](x, y) ≤ c

|x− y|
,

where c depends only on k, see [13]. Fix a point y ∈ Ω] \ D and let 0 < r2 = dist(y, {σDij}i 6=j ∪ ∂Ω]),
for i, j = 1, · · · , H. Then, there exists a constant C > 1 depending only on the a priori data such that
Br2/C(y) contains at most a portion of one face of the polyhedron D. Hence, in this case, the ball is
divided into two zones with different conductivity coefficient (thanks to (2.11)), that is, for a suitable
coordinate system, there exists a ∈ [− r2C ,

r2
C ] such that

γ̂D(x) = 1 + (k − 1)χ{x3>a}(x), ∀x ∈ Br2/C(y). (4.4)

We extend the coefficient γ̂D in R3, that is, we define

γ̂y(x) := 1 + (k − 1)χ{x3>a}(x), ∀x ∈ R3,

where the same coordinate frame of (4.4) has been used. Denote by Γ̂ the biphase fundamental solution
of

div(γ̂y(·)∇Γ̂(·, y)) = −δ(· − y), in R3.

We refer the reader to [13] for more details on the biphase fundamental solution. In the following
proposition, we recall other useful properties of the Green function that come from some of the results
in [13, 17, 18].

Proposition 4.1. For all C1 > 1 there exists a constant C > 0 depending on the a priori data and C1

such that, for all y ∈ Ω] \D satisfying

dist(y, {σDij}i 6=j ∪ ∂Ω]) ≥ r0

C1
, i, j = 1, · · · , H,

it follows that
‖G](·, y)− Γ̂(·, y)‖H1(Ω]) ≤ C, (4.5)

and, for all % > 0,
‖G](·, y)‖H1(Ω]\B%(y)) ≤ C%−

1
2 . (4.6)

Let P ∈ ∂D. Without loss of generality, assume that P belongs to the i− th face Fi and that

dist(P, {σDij}i 6=j) ≥ R1,

and let yr = P +rν(P ), r > 0, where ν(P ) is outer unit normal vector in P to ∂D. Then, for all r < R1

2 ,
and x ∈ D ∩BR1

2
(P ), we get that

|∇G](x, yr)−∇Γ̂(x, yr)| ≤ C, (4.7)

where ∇Γ̂ = 2
k+1∇Γ(x, yr).
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4.2 Estimating an auxiliary function

Recalling (3.3), for all y, z ∈ G, we consider

S(y, z) := (k − 1)

∫
Ω

(χD0 − χD1)∇G]0(x, y) · ∇G]1(x, z) dx, (4.8)

where G]i , for i = 0, 1, are solutions to (4.3), where γD = γDi . Note that

• for all z ∈ Ω] \ ΩG ,
∆yS(·, z) = 0, in Ω] \ ΩG ; (4.9)

• for all y ∈ Ω] \ ΩG ,
∆zS(y, ·) = 0, in Ω] \ ΩG ; (4.10)

• for all y, z ∈ Ω0, the Green’s functions G]0 and G]1 do not have singularities in Ω and by the regularity

of G]0, G]1 in Ω] \ ΩG ,

G]0(·, y)b∂Ω, G
]
1(·, z)b∂Ω∈ H

1
2
co(Σ),

that is, thanks to (4.6),

‖G]0(·, y)‖
H

1
2
co(Σ)

, ‖G]1(·, z)‖
H

1
2
co(Σ)

≤ C, (4.11)

where C depends only on the a priori data. In fact, for example

‖G]0(·, y)‖
H

1
2
co(Σ)

≤ ‖G]0(·, y)‖
H

1
2 (∂Ω)

≤ ‖G]0(·, y)‖H1(Ω) ≤ ‖G]0(·, y)‖H1(Ω]\Br1 (y)) ≤ Cr
− 1

2
1 .

(4.12)

Analogously for G]1(·, z).

In order to prove stability estimates in terms of the Hausdorff distance of the inverse problem under
investigation, we need first to establish upper and lower bounds for the function S(y, z) defined in (4.8).
These are contained in the next two propositions. To simplify the presentation, we assume, without loss
of generality, that using a rigid transformation of coordinates the point P in Proposition 3.8 coincides
with the origin, i.e. P = O, and the outer unit normal vector ν is equal to e3, where e3 = (0, 0, 1).

Moreover, in accordance to Definition 2.1, we use the notation σΩG
ij , with i 6= j, to denote the edges of

ΩG .
The proofs of the following two propositions are in Appendix A.

Proposition 4.2. Assume that ∥∥∥ΛΣ
γD0
− ΛΣ

γD1

∥∥∥
?
≤ ε, (4.13)

where 0 < ε < 1. Under the notation of Proposition 3.8, let Q = P + de3 and ξh = P + he3, where
0 < h < d1 and

d1 := d

(
1− sinϑ

4

)
and ϑ = arctan

(
R

d

)
. (4.14)

Then, there exists two suitable constants C3 and C4 depending on the a priori data such that∣∣S(ξh, ξh)
∣∣ ≤ C

h
εC3h

C4
(4.15)

where C depends on the a priori data.
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Proposition 4.3. Under the notation of Proposition 3.8, let ξh = P + he3. There exist 0 < h < 1
2 and

0 < C < 1 depending only on the a priori data such that

|S(ξh, ξh)| ≥ C

h
∀h, 0 < h ≤ h%, (4.16)

where
% = min{dist(P,D1), Cr0} (4.17)

and C depends on the a priori data.

Remark 4.4. Note that % ≤ Cr0 is needed in order to guarantee that a ball of center P and radius %
doesn’t intersect edges and vertices of ∂ΩG \ ∂Ω.

4.3 Logarithmic stability estimates

Now, we use Proposition 4.2 and Proposition 4.3 to prove the following logarithmic stability estimate.

Theorem 4.5. Let the assumptions of Section 2.1 apply. Let D0, D1 be two polyhedral inclusions in D.
Let 1 and k be the conductivity coefficients of Ω\Di and Di, for i = 0, 1, respectively. If, for some ε with
0 < ε < 1, ∥∥∥ΛΣ

γD0
− ΛΣ

γD1

∥∥∥
?
≤ ε,

then
dH(∂D0, ∂D1) ≤ ω̃(ε), (4.18)

where ω̃(ε) is an increasing function in [0,+∞) such that

ω̃(t) ≤ C| log t|−ζ , for all 0 < t < 1,

where C > 0 and ζ, 0 < ζ ≤ 1 are constants depending only on the a priori data.

Proof. By (4.15) and (4.16), we have

C̃

h
≤ |S(ξh, ξh)| ≤ Ĉ

h
εC3h

C4
, ∀h, 0 < h ≤ h%,

that is
C ≤ εC3h

C4
,

where C3, C4 are the constants in (4.15) and 0 < C < 1. Since 0 < ε < 1, from the last inequality we get

h ≤ C̃
(

1

| log ε|

) 1
C4

, ∀h, 0 < h ≤ h%.

In particular, choosing h = h%, we find

% ≤ C
(

1

| log ε|

) 1
C4

.

From (4.17), we have to distinguish two cases.
Case 1: % = dist(P,D1). In this case, by (3.13), we get

d3
µ(D0, D1) ≤ % ≤ C

(
1

| log ε|

) 1
C4

,
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that is

dµ(D0, D1) ≤ % 1
3 ≤ C

(
1

| log ε|

) 1
3C4

.

Therefore, thanks to Proposition 3.4, we find

dH(∂D0, ∂D1) ≤ Cdµ(D0, D1) ≤ % 1
3 ≤ C

(
1

| log ε|

) 1
3C4

.

Case 2: % = Cr0. Then, we obtain the assertion of the theorem simply noticing that

dH(∂D0, ∂D1) ≤ diam(Ω) ≤ Cr0 ≤
C

C

(
1

| log ε|

) 1
C4

,

where C depends on the a priori data only.

5 On the regularity properties of the local DtN map

In this section we investigate the differentiability properties of the local DtN map. The first part of this
section is devoted to the non trivial task of constructing a Lipschitz vector field U from R3 to R3 mapping
D0 to D1 which is piecewise affine in a neighborhood of ∂D0 (Proposition 5.1) and to prove its main
properties, see Proposition 5.2. Then in Proposition 5.3 and Proposition 5.4 we state the differentiability
of the DtN map showing that its Gateaux derivative along the direction U exists and is continuous.
Furthermore, we derive a distributed formula for the Gateaux derivative and we use this representation
to bound it from below (Proposition 5.5).

5.1 Construction of a Lipschitz vector field mapping D0 to D1

In this subsection we assume that
dH(∂D0, ∂D1) ≤ δ0 (5.1)

as in Proposition 3.9, hence it follows that the two polyhedra D0 and D1 have the same number of vertices
such that

dist(V D0
i , V D1

i ) ≤ CdH(∂D0, ∂D1), for i = 1, . . . , N.

For sake of shortness we again use the notation (3.18)

dH = dH(∂D0, ∂D1)

Let W ⊂ Ω be a tubular neighborhood of ∂D0 with width r0
4 so that

dist(W, ∂Ω) ≥ r0

2
.

In the sequel, we denote by T0 the union of non overlapping isosceles triangles contained in the faces of
D0 with basis on the sides of the polyhedron and height

h0 =
r0 min{1, tan(θ0/2)}

2
. (5.2)

The following result holds:
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Proposition 5.1. There exists a vector field U : R3 → R3 with U ∈ W 1,∞(R3) and satisfying the
following properties

U(V D0
i ) = V D1

i − V D0
i , ∀ i = 1, . . . , N, (5.3)

supp U ⊂ W, (5.4)

U continuous,piecewise affine on T0, (5.5)

|U|+ |DU| ≤ C̃dH , (5.6)

where DU dentoes the Jacobian matrix of U and C̃ is a constant depending only on the a priori constants.

Proof. To construct the vector field U satisfying (5.3) - (5.6) observe that by Kirszbraun’s theorem [40,
Theorem 1.31] it is always possible to extend a function f : A ⊂ R3 → R3 which is Lipschitz continuous
on an arbitrary subset A of R3 to a Lipschitz function Ū : R3 → R3 such that

ŪbA= f,

and Ū having the same Lipschitz constant L as f .
So, let us first construct the map f . We fix an arbitrary face F 0

j of the polyhedron D0. Assume that

F 0
j has K sides. Then on each side li, i = 1, . . .K, we construct isosceles triangles {T 0

i }Ki=1, with basis
li, i = 1, . . .K and height h0, as defined in (5.2), in such a way that all the triangles are strictly contained
in F 0

j , disjoint and mutually intersecting only at the common vertex of F 0
j , see, for example, Figure

6. Thanks to the fact that D0, D1 ∈ D and hence satisfy the same apriori assumptions, we can repeat

Figure 6: Sketch of the construction of isosceles triangles on the face F 0
1 in the specific case of a cube D0.

exactly the same construction of triangles on the corresponding face F 1
j of D1. We then construct a

continuous piecewise affine map Φj defined on the ∪Ki=1T
0
i as follows: it is affine on each triangle of the

partition and satisfies Φj(V
T 0
i

l ) = V
T 1
i

l − V T
0
i

l for each i = 1, . . .K and l = 1, 2, 3. By (5.1) one has that

|V T
1
i

l − V T
0
i

l | ≤ CdH (5.7)

for each i = 1, . . .K and l = 1, 2, 3 and one can see that on ∪Ki=1T
0
i the map Φj satisfies

|Φj(x)| ≤ C0dH , |Φj(x)− Φj(y)| ≤ C1dH |x− y|, ∀x, y ∈ ∪Ki=1T
0
i (5.8)

where C0 and C1 depend only on the a-priori constants. Consider now the map f defined on the collection
of triangles T0 as follows: for any x ∈ T0 ∩F 0

j it satisfies f(x) = Φj(x). Clearly, f is Lipschitz continuous
and satisfies (5.8) on T0.
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Applying now Kirszbraun’s theorem for A = T0 there exists a Lipschitz map Ū from R3 to R3 which
is Lipschitz continuous and satisfies (5.8) for all x, y ∈ R3. Finally, by considering a real valued cut-off
smooth function ϕ : R3 → R such that 0 ≤ ϕ ≤ 1, with compact support in W and with ϕ = 1 in
a tubular neighborhood of ∂D0 of width r0/4 and such that |∇ϕ| ≤ C with C depending only on the
apriori data then it is straightforward to see that U = ϕŪ satisfies the desired properties (5.3) - (5.6).

As a consequence of the previous construction we have the following

Proposition 5.2. The map
Φt = I + tU t ∈ [0, 1]

has the following properties

Φt is piecewise affine on ∂D0; (5.9)

Φt ∈W 1,∞(Ω) is invertible; (5.10)

|DΦt − I|, |DΦ−1
t − I| ≤ ctdH ; (5.11)

Φt(Ω \D0) ⊂ Ω; (5.12)∣∣∣∣ ddtΦt
∣∣∣∣ , ∣∣∣∣ ddtΦ−1

t

∣∣∣∣ ≤ CdH ; (5.13)∣∣∣∣ ddtDΦt

∣∣∣∣ , ∣∣∣∣ ddtDΦ−1
t

∣∣∣∣ ≤ CdH ; (5.14)∣∣∣∣ ddtDΦ−1
t +DU

∣∣∣∣ ≤ Ctd2
H ; (5.15)∣∣∣∣ ddt (DΦ−1

t )T +DUT
∣∣∣∣ ≤ Ctd2

H , (5.16)

where DΦt, DΦ−1
t , and DU are the Jacobian matrices of Φt, Φ−1

t , and U , respectively and dH is as in
(3.18).

Proof. Property (5.9) follows immediately from the definition of U . In order to prove (5.10), notice that

|DΦt − I| = t|DU| ≤ t C̃0dH
r0

≤ t C̃0δ0
4r0

,

where the last inequality comes from the stability estimate (4.18). Now, by the equivalent Proposition
3.4 of [18] possibly taking δ0 small enough so that

C̃0δ0
4r0

<
1

2
,

it follows that |DΦt − I| ≤ 1/2 and Φt is invertible for all t ∈ [0, 1]. Moreover, by the Implicit Map
Theorem it follows that DΦ−1

t (y) = (DΦt)
−1(Φ−1

t (y)) and the analyticity in the parameter t of (DΦt)
−1

gives

|DΦ−1
t − I| ≤

C̃0t

r0
dH .

By construction of Φt, it holds Φt(Ω \D0) ⊂ Ω. Estimates (5.13) - (5.16) are a consequence of (5.6) and
the analyticity of Φ−1

t and DΦ−1
t with respect to t.
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5.2 On the differentiability properties of DtN map

In this subsection, we state some results concerning the existence of the Gateaux derivative of the local
DtN map along the direction of the vector field U (Proposition 5.3) and its continuity (Proposition 5.4).
We do not provide the proofs of the two propositions since they can be obtained in the same way as in
the two-dimensional case treated in Section 5 of [18].

Let Dt = Φt(D0) and γDt(x) = γD0

(
Φ−1
t (x)

)
. Given f, g ∈ H

1
2
co(Σ), let ut be the solution to (2.14)

with γD = γDt and vt the solution of the same equation satisfied by ut but with Dirichlet boundary data
g (see (2.14)).

We define

F (t, f, g) =

〈
ΛΣ
γDt

fbΣ, g
〉

=

∫
Ω

γDt∇ut · ∇vt dx =

〈
∂ut
∂n
bΣ, g

〉
and

A(t) = DΦ−1
t (DΦ−1

t )T det (DΦt)

A = A′(0) = divUI − (DU +DUT ).

The following results hold.

Proposition 5.3. F (t, f, g) is differentiable for all t0 ∈ [0, 1] and

F ′(t0, f, g) = −
∫

Ω

γDt0At0∇ut0 · ∇vt0 dx

where

At0 =
d

dt

((
DΦ−1

t0,t

) (
DΦ−1

t0,t

)T
det (DΦt0,t)

)⌊
t=t0

and Φt0,t = I + tUt0 , and Ut0 is a W 1,∞(Ω) map satisfying the analogue properties as those introduced
for U with Dt0 instead of D0. In particular for t = 0

F ′(0, f, g) = −
∫

Ω

γD0
A∇u0 · ∇v0 dx.

Proposition 5.4. There exist constants C, β3 > 0 depending only on the a priori data such that for all
t ∈ [0, 1]

|F ′(t, f, g)− F ′(0, f, g)| ≤ C‖f‖
H

1
2
co(Σ)
‖g‖

H
1
2
co(Σ)

tβ3d1+β3

H ,

for dH as in (3.18).

5.3 Lower bound of the derivative

We now establish a lower bound for the derivative of F at t = 0. More precisely, we prove the following

Proposition 5.5. There exists a constant m0 > 0, depending only on the a priori data such that

‖F ′(0)‖∗ ≥ m0dH .

where

‖F ′(0)‖∗ = sup

 |F ′(0, f, g)|
‖f‖

H
1
2
co(Σ)
‖g‖

H
1
2
co(Σ)

: f, g 6= 0


and dH is given in (3.18).

Before proving the lower bound, we state the following lemma which is a special case of Proposition
1.6 in [36].
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Lemma 5.6. Let Br be a ball of radius r > 0 centered at the origin, and let B±r be the upper and the
lower half ball and let γ1, γ2 be two positive constants. Let v ∈ H1(Br) be a solution to

div
(

(γ1 + (γ2 − γ1)χB+
r

)∇v
)

= 0, in Br. (5.17)

Then v ∈ C∞(B
±
r ) and for all δ > 0 there exists a constant depending only on γ1, γ2 and δ such that

‖∇v‖L∞(B(1−δ)r) ≤ C‖v‖L2(Br). (5.18)

Proof of Proposition 5.5. We set

W = (V D0
1 − V D1

1 , V D0
2 − V D1

2 , . . . , V D0

N − V D1

N ).

By Proposition 3.9 we have that
C−1dH ≤ |W | ≤ CdH , (5.19)

where C depends on the a priori data. We normalize by the length |W | of the vector W by setting

Ũ =
U
|W |

, Ã =
A
|W |

,

and

H(f, g) := −
∫

Ω

γD0Ã∇u0 · ∇v0 dx,

so that F ′(0, f, g) = |W |H(f, g). Let m1 = ‖H‖∗ the operator norm so that

|H(f, g)| ≤ m1‖f‖
H

1
2
co(Σ)
‖g‖

H
1
2
co(Σ)

, ∀f, g ∈ H
1
2
co(Σ).

In particular, we have
‖F ′(0)‖∗ = |W |‖H‖∗. (5.20)

We divide the proof in three main steps.

Step 1. To start with, we choose special boundary values f ], g] by setting for y, z ∈ Ω] \ Ω,

f ](·) = G]0(·, y)b∂Ω, g](·) = G]0(·, z)b∂Ω

where G]0(·, y), G]0(·, z) are the Green’s functions defined in (4.3) with conductivity γD0
and singularity

at y and z respectively. With these choices, we consider the corresponding solutions G]0(x, y) and G]0(x, z)
that we will still denote by u0 and v0 for the sake of brevity. Since y, z ∈ Ω0 \Ω, u0, v0 ∈ H1(Ω) and we
can define

Θ(y, z) := −
∫

Ω

γD0Ã∇u0 · ∇v0 dx = −
∫

Ω

γD0Ã∇G
]
0(·, y) · ∇G]0(·, z) dx.

First, observe that for y, z ∈ Br1(P0) ⊂ Ω0, see (4.2),

Θ(y, z) = H(f ], g]),

hence
|Θ(y, z)| ≤ m1‖f ]‖

H
1
2
co(Σ)
‖g]‖

H
1
2
co(Σ)

.

From (4.12), we have that ‖f ]‖
H

1
2
co(Σ)

, ‖g]‖
H

1
2
co(Σ)

≤ Cr−
1
2

1 . Hence,

|Θ(y, z)| ≤ Cm1

r1
, ∀y, z ∈ Br1(P0). (5.21)
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Step 2. As second step, we use the properties of Θ(y, z) to go from the distributed formula to the boundary
formula on ∂D0, far from vertices and edges. To this purpose, we consider a tubular neighborhood of the
edges {σD0

ij }, with i 6= j, that is

B =
⋃
i,j
i6=j

{
x ∈ Ω : dist(x, σD0

ij ) ≤ r0

c1

}
,

where c1 > 1 depends only on the a priori data, so that

(Ω \D0) \ B is connected; (5.22)

dist(B, ∂Ω) ≥ r0

2
. (5.23)

Let us write

Θ(y, z) = −
∫

Ω\B
γD0
Ã∇u0 · ∇v0 dx−

∫
B
γD0
Ã∇u0 · ∇v0 dx.

In Ω \D0 and in D0 we have that Ã∇u0 · ∇v0 = −div(b), where

b =
(
Ũ · ∇u0

)
∇v0 +

(
Ũ · ∇v0

)
∇u0 − (∇u0 · ∇v0) Ũ .

Then, we can write∫
Ω\B

γD0
Ã∇u0 · ∇v0 dx = −

∫
Ω\(D0∪B)

div(be) dx− k
∫
D0∪B

div(bi) dx,

where we have set be = b
⌊

Ω\D0
and bi = b

⌊
D0

. Let us now integrate by parts and denote by ν the outward

unit normal vector to B and to D0. Observing that by construction, supp Ũ ⊂ W, it follows that b = 0
on ∂Ω. Hence, ∫

Ω\(D0∪B)

div(be) dx = −
∫
∂B∩(Ω\D0)

be · ν dσ(x)−
∫
∂D0∩(Ω\B)

be · ν dσ(x), (5.24)

and ∫
D0∪B

div(bi) dx =

∫
∂D0\B

bi · ν dσ(x)−
∫
∂B∩D0

bi · ν dσ(x). (5.25)

Then by (5.24) and (5.25), it follows∫
Ω\B

γD0
Ã∇u0 · ∇v0 dx =

∫
∂B
γD0

b · ν dσ(x)−
∫
∂D0\B

[γD0
b · ν] dσ(x),

where [·] denotes the jump along the surface ∂D0. By the transmission conditions satisfied by u0 and v0

across ∂D0 and the fact that Ũ ∈W 1,∞(R3) on ∂D0 \ B, we can write

[γD0
b · ν] = Ũ · ν(k − 1)M∇ui0 · ∇vi0,

where M is the so-called polarization tensor, i.e., a 3 × 3 matrix with eigenvectors ν and ν⊥ and with
eigenvalues k and 1. Hence, we can rewrite (5.21) in the form

Θ(y, z) =−
∫
B
γD0Ã∇u0 · ∇v0 dx−

∫
∂B
γD0b · ν dx

+

∫
∂D0\B

Ũ · ν(k − 1)M∇ui0 · ∇vi0 dx.
(5.26)
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Step 3. We now use the properties of the function Θ to propagate the estimate (5.21) up to points that
are close to the faces of D0 but far from vertices and edges.
From formula (5.26), Θ(y, z) is well defined for (y, z) ∈ Ω] \ (D0 ∪ B) and recalling that u0(·) = G]0(·, y),
v0(·) = G](·, z), we have

div(γD0
∇Θ) = 0, in Ω \ (D0 ∪ B)

both with respect to y and z, i.e.

divy(γD0∇yΘ(·, z)) = 0, and divz(γD0∇zΘ(y, ·)) = 0, in Ω \ (D0 ∪ B).

Let us now consider an arbitrary face Fj of D0 and let us choose P ∈ Fj ∩ T as the incenter of a triangle
T of Fj ∩ T0, where T ∈ T0 and T0 is the partition of triangles defined at the beginning of the section.

Consider then a ball centered at P and radius r0
2C1

with C1 = max

(
c1,

1+
√

1+tan2(θ0/2)

min(1,tan(θ0/2))

)
. Then by the

a priori assumptions on D0, B r0
2C1

(P ) is such that it intersects ∂D0 only on the face Fj , B r0
2C1

(P )∩ Fj is

striclty contained in T , and dist(P,B) ≥ r0
2C1

.

Let c̃ be a simple curve adjoining P + r0
2C1

ν(P ) with the point P̃0 ∈ B r0
2C1

(P0) ⊂ Ω0 such that c̃ ⊂ Ω] \D0

and dist(̃c, D0) ≤ r0
2C1

. Let

c̃′ = c̃ ∪
{
P + tν(P ), t ∈

[
0,

r0

2C1

]}
and

K =

{
x ∈ (Ω] \D0) : dist(x, c̃′) <

r0

4C1

}
K′ =

{
x ∈ (Ω] \D0) : dist(x, c̃′) <

r0

8C1

}
.

Then the function Θ solves in K the equations

divy(γD0∇yΘ(·, z)) = 0, and divz(γD0∇zΘ(y, ·)) = 0.

Let us start to estimate Θ(y, z) for y, z ∈ K using (5.26). Since dist(K,B) ≥ r0
4C1

, we have that

‖∇u0‖L2(B) ≤ ‖G]0(·, y)‖
L2

(
Ω]\B r0

4C1

(y)

) ≤ C,
and analogously

‖∇v0‖L2(B) ≤ ‖G]0(·, z)‖
L2

(
Ω]\B r0

4C1

(z)

) ≤ C,
Hence, we have that ∣∣∣∣ ∫

B
γD0∇u0 · ∇v0 dx

∣∣∣∣ ≤ C‖∇u0‖L2(B)‖∇v0‖L2(B) ≤ C. (5.27)

Let us now estimate the second integral on the right-hand side of (5.26). For, we consider a neighborhood
of ∂B, that is

M =

{
x : dist(x, ∂B) ≤ r0

8C1

}
(5.28)

and

M′ =

{
x : dist(x, ∂B) ≤ r0

16C1

}
. (5.29)

Since u0 and v0 are variational solutions of equation (5.17) in M, we apply the estimate (5.18), getting

‖∇u0‖L∞(M′), ‖∇v0‖L∞(M′) ≤ C,
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where C depends only on the a priori constants. Hence,∣∣∣∣ ∫
∂B
γD0

b · ν dσ(x)

∣∣∣∣ ≤ C. (5.30)

For a similar reason, for points on ∂D0 \
(
B ∪B r0

2C1

(P )
)

, we can bound∣∣∣∣ ∫
∂D0\

(
B∪B r0

2C1

(P )

) Ũ · ν(k − 1)M∇ui0 · ∇vi0 dx
∣∣∣∣ ≤ C (5.31)

since y, z ∈ K. Finally, let us bound∫
∂D0∩B r0

2C1

(P )

Ũ · ν(k − 1)M∇ui0 · ∇vi0 dx. (5.32)

Notice that if y, z are at positive fixed distance from ∂D0 ∩ B r0
2C1

(P ), then we can use again (5.18) to

estimate (5.32). On the other hand, for points y, z close to ∂D0 ∩ B r0
2C1

(P ), we can use (4.5) and the

explicit formula of the fundamental solution to get∣∣∣∣ ∫
∂D0∩B r0

2C1

(P )

Ũ · ν(k − 1)M∇ui0 · ∇vi0 dx
∣∣∣∣ ≤ C(dydz)

−1, (5.33)

where dy = dist(y,D0), dz = dist(z,D0). Collecting all previous estimates (5.27), (5.30), (5.31) and
(5.32) we end up with the following bound

|Θ(y, z)| ≤ C(dydz)
−1, ∀y, z ∈ K. (5.34)

Let us set consider the following subsets of the walkway K

K� =

{
x ∈ K : dist(x,D0) ≥ r0

32C1

}
K�0 =

{
x ∈ K : dist(x,D0) ≥ r0

16C1

}
.

Then by (5.34) and the definition of K�, the following bound holds

|Θ(y, z)| ≤ C, ∀(y, z) ∈ K�.

Hence, thanks to (5.21), proceeding as in [11, Theorem 5.1], we can show that

‖Θ(·, z)‖L∞(BR1
(Q)) ≤ Cm

δ
1, ∀z ∈ Ω0

where Q = P + r0
4C1

ν(P ), R1 = r0
8C1

and δ ∈ (0, 1). Similarly, we derive

‖Θ(y, ·)‖L∞(BR1
(Q)) ≤ Cm

δ2

1 , ∀y ∈ BR1(Q). (5.35)

We now apply the three spheres inequality for harmonic functions to Θ(·, z) in the balls

BR1
(Q) ⊂ BR2

(Q) ⊂ BR3
(Q),

for

R1 =
R1

2
, R2 =

r0

4C1
− r

2
, R3 =

r0

4C1
− r

4
,
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with r to be chosen. We have for z ∈ BR1
(Q) and ϑr =

log
(
R3
R2

)
log
(
R3
R1

) that

‖Θ(·, z)‖L∞(BR2
(Q)) ≤ ‖Θ(·, z)‖ϑr

L∞(BR1
(Q))
‖Θ(·, z)‖1−ϑr

L∞(BR3
(Q))

,

and from (5.35) and (5.34) we find

‖Θ(·, z)‖L∞(BR2
(Q)) ≤

(
1

r

)1−ϑr
mϑr

2

where
m2 = Cmδ2

1 . (5.36)

Hence

|Θ(yr, z)| ≤ C
(

1

r

)1−ϑr
mϑr

2 ≤
mϑr

2

r
, ∀z ∈ BR1(Q).

We now consider Θ(yr, ·) in the same disks getting

|Θ(yr, yr)| ≤ C
(

1

r2

)1−ϑr (1

r

)ϑr
m
ϑ2
r

2 ≤
m
ϑ2
r

2

r2
.

Hence

|Θ(yr, yr)| ≤ C
m
ϑ2
r

2

r2
. (5.37)

Step 4. We now want to estimate Θ(yr, yr) from below. We start from

Θ(yr, yr) =−
∫
B
γD0
Ã∇u0 · ∇v0 dx−

∫
∂B
γD0

b · ν dσ(x)

+

∫
∂D0\

(
B∪B r0

2C1

(P )

) Ũ · ν(k − 1)M∇ui0 · ∇vi0 dσ(x)

+

∫
∂D0∩B r0

2C1

(P )

Ũ · ν(k − 1)M∇ui0 · ∇vi0 dσ(x) := I1 + I2 + I3 + I4.

From estimates (5.27), (5.30), and (5.31) we get

|Ii| ≤ C, i = 1, 2, 3,

where C depends only on the a priori data. To evaluate I4 from below, we use (4.5) and add and subtract

(Ũ · ν)(P ) in the integral. A straightforward computation then give for r ≤ r0
16C1

,

|I4| ≥ C
|(Ũ · ν)(P )|

r2
− C

r
.

Hence,

|Θ(yr, yr)| ≥ C
|(Ũ · ν)(P )|

r2
− C

r
,

and by (5.37) we finally get

|(Ũ · ν)(P )| ≤ C(m
ϑ2
r

2 + r).
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If m2 ≤ e−(16)4

, i.e. (see (5.36))

m1 ≤

(
e−(16)4

C

) 1
δ2

=
1

C1
(5.38)

where C1 depends only on the a priori data, we can pick up

r = r =
r0

C1
| logm2|−

1
4

getting
|(Ũ · ν)(P )| ≤ C| logm2|−

1
4

and recalling the definition of m2, we find

|(Ũ · ν)(P )| ≤ Cω0(m1) (5.39)

where ω0(t) is an increasing concave function such that lim
t→0

ω0(t) = 0. Note that with a similar procedure

the estimate (5.39) can be obtained for each point in a neighborhood of P in the triangle T containing

P . Since Ũ is affine on the triangle T the estimate holds also on the corresponding edge σD0
ij and at

the adjoining vertices. We can repeat this argument for each side of the face Fj . Hence, if {V D0
ij }i, for

1 ≤ i ≤ Nj , indicate the vertices on the face Fj of D0

|Ũ(V D0
ij ) · νj | ≤ ω0(m1), for all 1 ≤ i ≤ Nj

where νj is the unit outward normal to the face Fj . In particular, recalling the definition of Ũ on ∂D0,
we get ∣∣∣∣ (V D0

ij − V
D1
ij ) · νj

|W |

∣∣∣∣ ≤ ω0(m1), for all 1 ≤ i ≤ Nj .

We can repeat this on any face Fj so that∣∣∣∣ (V D0
ij − V

D1
ij ) · νj

|W |

∣∣∣∣ ≤ ω0(m1), for all 1 ≤ i ≤ Nj , j ∈ {1, . . . ,H}, (5.40)

and νj normal to the face Fj . Let

|V D0
i0j0
− V D1

i0j0
| = max

i,j
|V D0
ij − V

D1
ij |.

Then
|V D0
i0j0
− V D1

i0j0
|

|W |
≥ 1

N
,

where N is the total number of vertices of D0 and D1, see Proposition 3.9. Moreover, since, for the a
priori information, there are three linearly independent unit directions ν for which (5.40) holds for i = i0
and j = j0 then it holds for every unit direction, in particular by choosing ν parallel to V D0

i0j0
− V D1

i0j0
, we

get

1

N
≤
|V D0
i0j0
− V D1

i0j0
|

|W |
=
|(V D0

i0j0
− V D1

i0j0
) · ν|

|W |
≤ ω0(m1),

which gives

m1 ≥ ω−1
0

(
1

N

)
,
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and recalling (5.38) we have

m1 ≥ min

(
ω−1

0

(
1

N

)
,

1

C1

)
.

Finally, from the estimate (5.19) and (5.20), we get

‖F ′(0)‖ ≥ m0dH ,

with m0 = C−1 min
(
ω−1

0

(
1
N

)
, 1
C1

)
.

6 Lipschitz stability: proof of Theorem 2.5

Let δ0 be as in Proposition 3.9 and let ε0 be such that

ω̃(ε0) ≤ δ0 (6.1)

where ω̃ is the logarithmic modulus of continuity given in Theorem 4.5.
Let us assume first that

ε := ‖ΛΣ
γD0
− ΛΣ

γD1
‖? ≤ ε0,

so that, by Theorem 4.5,
dH := dH(∂D0, ∂D1) ≤ ω̃(ε0) ≤ δ0.

For f, g ∈ H
1
2
co(Σ) the map F (t, f, g) is well defined for t ∈ [0, 1].

Notice that, by definition of F and by (6.1)

|F (1, f, g)− F (0, f, g)| =
∣∣∣∣〈(ΛΣ

γD0
− ΛΣ

γD1

)
fbΣ, g

〉∣∣∣∣ ≤ ε‖f‖H 1
2
co(Σ)
‖g‖

H
1
2
co(Σ)

. (6.2)

Let us write

F (1, f, g)− F (0, f, g) =

∫ 1

0

F ′(t, f, g)dt

= F ′(0, f, g)−
∫ 1

0

[F ′(t, f, g)− F ′(0, f, g)] dt,

hence

|F (1, f, g)− F (0, f, g)| ≥ |F ′(0, f, g)| −
∫ 1

0

|F ′(t, f, g)− F ′(0, f, g)| dt, (6.3)

By Proposition 5.4,∫ 1

0

|F ′(t, f, g)− F ′(0, f, g)| dt ≤
Cd1+β3

H

1 + β3
‖f‖

H
1
2
co(Σ)
‖g‖

H
1
2
co(Σ)

∀f, g ∈ H
1
2
co(Σ) (6.4)

and by Proposition 5.5, there exist f0, g0 ∈ H
1
2
co(Σ) such that

|F ′(0, f0, g0)| ≥ m0dH
2
‖f0‖

H
1
2
co(Σ)
‖g0‖

H
1
2
co(Σ)

. (6.5)

Hence by (6.2), (6.3), (6.4) (for f = f0 and g = g0) and by (6.5) we have that

ε ≥

(
m0

2
−

Cdβ3

H

1 + β3

)
dH . (6.6)
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Now, by Theorem 4.5 there is ε1 ≤ ε0 depending only on the a priori data, such that, if

ε := ‖ΛΣ
γD0
− ΛΣ

γD1
‖? ≤ ε1,

then
m0

2
−

Cdβ3

H

1 + β3
≥ m0

4

and, by (6.6),

ε ≥ m0

4
dH (6.7)

Let us now consider the case
‖ΛΣ

γD0
− ΛΣ

γD1
‖? ≥ ε1, (6.8)

(that includes the case ‖ΛΣ
γD0
− ΛΣ

γD1
‖? > ε0).

We have

dH ≤ 2diam(Ω) ≤ 2R0 ≤
2R0

ε1
‖ΛΣ

γD0
− ΛΣ

γD1
‖?. (6.9)

By (6.7) and (6.9) estimate (2.16) holds for

C = max

{
m0

4
,

2R0

ε1

}
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A Upper and lower bounds for S(y, z).

In this section, we provide the proofs of Proposition 4.2 and Proposition 4.3.

Proof of Proposition 4.2. We divide the proof of the proposition into four steps.
Step 1: for all y, z ∈ Br1(P0), with P0 ∈ Ω0, it holds∣∣S(y, z)

∣∣ ≤ Cε, (A.1)

where C is a constant depending on the a priori data.

Proof of Step 1. By the Alessandrini identity (4.1) specialized to the case u0(·) = G]0(·, y) and u1(·) =

G]1(·, z), we find

∣∣S(y, z)
∣∣ =

∣∣∣∣〈(ΛΣ
γD0
− ΛΣ

γD1
)G]0(·, y)

⌊
Σ
, G]1(·, z)

⌊
Σ

〉∣∣∣∣
≤
∥∥ΛΣ

γD0
− ΛΣ

γD1

∥∥
?
‖G]0(·, y)‖H1(Ω)‖G]1(·, z)‖H1(Ω) ≤ Cε

thanks to (4.11) and (4.13), where C depends only on the a priori data.
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In the next step, we get an estimate of S(y, z), when the point y belongs to Ω0 while z is in G but is
far from edges and vertices of ΩG where H1-estimates of the Green function do not hold.

Step 2: let y ∈ Br1(P0), where P0 ∈ Ω0. For all C1 > 1 and z ∈ Ω] \

ΩG ∪
⋃

P1∈σ
ΩG
ij

B r0
C1

(P1)

, with

i 6= j, there exists a constant C depending on the a priori data and C1 such that∣∣S(y, z)
∣∣ ≤ Cd− 1

2
z . (A.2)

where dz = dist(z, ∂ΩG).

Proof of Step 2. Let us consider (4.8). Then

∣∣S(y, z)
∣∣ ≤ |k − 1|

{∫
D0

|∇G]0(x, y) · ∇G]1(x, z)| dx+

∫
D1

|∇G]0(x, y) · ∇G]1(x, z)| dx

}

hence, for i = 0, 1, we have∫
Di

|∇G]0(x, y) · ∇G]1(x, z)| dx ≤ C‖∇G]0(·, y)‖L2(Di)‖∇G
]
1(·, z)‖L2(Di)

≤ C‖G]0(·, y)‖H1(Ω]\Br1 (y))‖G
]
1(·, z)‖H1(Ω]\Bdz (z))

≤ Cd−
1
2

z ,

where C is a constant depending only on the a priori data.

Step 3: for all y ∈ Br1(P0), with P0 ∈ Ω0, it holds

|S(y, ξh)| ≤ C εη

h
1
2

, (A.3)

where

η = β2τ

(∣∣
log h

d1

∣∣
| log χ| +1

)
,

and 0 < β2 < 1 depending on the a priori data.

Remark A.1. Before proving Step 3, we note that as a consequence of Proposition 3.8 is always possible
to construct a path c joining a point x ∈ Br1(P0) to a point in G and a tubular neighborhood of c, where
its radius now depends also on r1,M1.

Remark A.2. In the proof of the proposition, we make an extensive use of the three spheres inequality
for harmonic functions. We refer the reader to [30, 31, 8] for more details. For the sake of simplicity,
we recall here the statement which is adapted to our case: for every solution w ∈ H1(B%0

(x)), where
B%0

(x) ⊂ G of the equation
∆w = 0 in B%0(x)

and for all 0 < %1 < %2 < %3 ≤ %0, it holds

‖w‖L∞(B%2 (x)) ≤ ‖w‖τL∞(B%1 (x))‖w‖
1−τ
L∞(B%3 (x)), (A.4)

where 0 < τ < 1 depends on %2

%3
, %1

%3
.
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Proof of Step 3. Thanks to Proposition 3.8, we use (A.1) and the three spheres inequality (A.4) to propa-
gate the smallness of S(y, z) inside Ω]\ΩG till reaching the point Q. In our notation, we choose w = S(y, ·)
and %0 = R in (A.4). Then, applying once the three spheres inequality, we get

‖S(y, ·)‖L∞(B%2 (z)) ≤ ‖S(y, ·)‖τL∞(B%1 (z))‖S(y, ·)‖1−τL∞(B%3 (z)).

The first and second terms on the right-hand side of the previous inequality are estimated by (A.1) and
(A.2), respectively, noticing that the worst case in (A.2) is given by dz = h, where h appears in the
definition of ξh. Therefore, we find

‖S(y, ·)‖L∞(B%2 (z)) ≤ Cετ
1

h
1
2 (1−τ)

where the last inequality comes from the fact that 0 < τ < 1. Then, we apply the three spheres inequality
along a chain of balls to reach the point Q, that is, we get

‖S(y, ·)‖L∞(B%2 (Q)) ≤ Cετ
β̃2 1

h
1
2 (1−τ β̃2 )

≤ Cετ
β̃2 1

h
1
2

,

where β̃2 is the number of iterations of the three spheres inequality and C depends on the a priori data. In
order to propagate the smallness from Q to ξh, we use the same procedure proposed in [8, 9], iterating an
application of the three spheres inequality (A.4) over a chain of balls of decreasing radius and contained
in a suitable cone of vertex P and axis ν = e3. Finally reasoning as in [8], we find

‖S(y, ·)‖L∞(Bρk(h)
(ξh)) ≤ C

εβ2τ

∣∣
log h

d1

∣∣
| log χ| +1

h
1
2

,

where C depends on the a priori constant and 0 < β2 < 1. Hence, (A.3) follows.

Step 4: final step. For all C1 > 1 and y, z ∈ Ω] \

ΩG ∪
⋃

P1∈σ
ΩG
ij

B r0
C1

(P1)

, with i 6= j, one can repeat

the same argument as in Step 2 to get

|S(y, z)| ≤ C(dydz)
− 1

2 ,

where C depends on the a priori data and on C1. In particular, choosing y = z = ξh, we find the estimate

|S(ξh, ξh)| ≤ C

h
. (A.5)

Similarly as in Step 3, we can apply Proposition 3.8 and an iteration of chain of balls joining a point
y ∈ Br1(P0), where P0 ∈ Ω], to Q. In the application of the three spheres inequality, estimates (A.3) and
(A.5) are now used. It holds

‖S(·, ξh)‖L∞(B%2 (Q) ≤ C
εβ̃1τ

∣∣
log h

d1

∣∣
| log χ| +1

h

where 0 < β̃1 < 1. Finally, we apply again the three spheres inequality along a chain of balls of decreasing
radius using the same construction of Step 3. Therefore, we get

‖S(·, ξh)‖L∞(Bρk(h)
(ξh)) ≤ C

εβ1τ

2

∣∣
log h

d1

∣∣
| log χ| +2

h
. (A.6)
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Defining A = 1/d1 and B = 2
| logχ| , we get by (A.6) the estimate

|S(ξh, ξh)| ≤ C ε
β1τ

2+B| logA|hB| log τ|

h
.

The assertion of the theorem follows defining C3 and C4 as

C3 = β1τ
2+2

| logA|
| log χ| , and C4 = 2

| log τ |
| logχ|

.

Next, we provide the proof of Proposition 4.3.

Proof of Proposition 4.3. Let % be as in (4.17) and consider ξh and 0 < h < h%, with h ∈ (0, 1
2 ) to be

chosen later. By equation (4.8), we get

|S(ξh, ξh)|
|k − 1|

≥

[∣∣∣∣ ∫
D0

∇G]0(x, ξh) · ∇G]1(x, ξh) dx

∣∣∣∣
−
∣∣∣∣ ∫
D1

∇G]0(x, ξh) · ∇G]1(x, ξh) dx

∣∣∣∣
]

=: |I1| − |I2|.
(A.7)

To estimate I2, note that, since ξh /∈ ∂ΩG , we can add and subtract the gradient of the biphase funda-
mental solution in I2, that is

|I2| =
∣∣∣∣ ∫
D1

(
∇G]0(x, ξh)−∇Γ̂0(x, ξh)

)
·
(
∇G]1(x, ξh)−∇Γ̂1(x, ξh)

)
dx

+

∫
D1

(
∇G]0(x, ξh)−∇Γ̂0(x, ξh)

)
· ∇Γ̂1(x, ξh) dx

+

∫
D1

∇Γ̂0(x, ξh) ·
(
∇G]1(x, ξh)−∇Γ̂1(x, ξh)

)
dx

+

∫
D1

∇Γ̂0(x, ξh) · ∇Γ̂1(x, ξh) dx

∣∣∣∣ =: |I21 + I22 + I23 + I24|.

(A.8)

Integral I21 can be estimated by (4.5), hence

|I21| ≤
∫

Ω]
|∇G]0(x, ξh)−∇Γ̂0(x, ξh)||∇G]1(x, ξh)−∇Γ̂1(x, ξh)| dx ≤ C. (A.9)

Integral I22 and I23 can be treated analogously. For example, by Cauchy-Schwarz inequality and (4.5),
we find that

|I22| ≤
∫
D1

|∇G]0(x, ξh)−∇Γ̂0(x, ξh)||∇Γ̂1(x, ξh)| dx

≤ C‖∇G]0 −∇Γ̂0‖L2(D1)‖∇Γ̂1‖L2(D1) ≤ C‖∇Γ̂1‖L2(Ω]\Bh(ξh)).

(A.10)

To estimate the last term in the previous inequality, we use the result in [8, Proposition 3.4], that is,
using the explicit behaviour of the biphase fundamental solution, that is

|∇Γ̂i(x, y)| ≤ C

|x− y|2
, ∀x, y ∈ R3, x 6= y, i = 0, 1,

and spherical coordinates, it is straightforward to prove that

‖∇Γ̂1‖L2(Ω]\Bh(ξh)) ≤
C

h
1
2

,
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hence, the use of this result in (A.10) gives

|I22| ≤
C

h
1
2

, and similarly |I23| ≤
C

h
1
2

. (A.11)

Integral I24 is estimated by using again the result in [8] and the fact that Bh(ξh) ⊂ B%(P ), since h ≤ %
2 ,

and moreover D1 ∩B%(P ) = ∅. Then,

|I24| ≤
∫
D1

|∇Γ̂0(x, ξh)||∇Γ̂1(x, ξh)| dx ≤ C
∫
D1

C

|x− ξh|4
dx

≤ C
∫
R3\B%(P )

C

|x− ξh|4
dx.

(A.12)

Note that |x − ξh| ≥ |x| − h, hence, from the application of spherical coordinates to the last term of
(A.12), we find

|I24| ≤ C
∫ +∞

%

r2

(r − h)4
dr,

and since h ≤ %
2 ≤

r
2 , we have that r − h ≥ r

2 , hence

|I24| ≤ C
∫ +∞

%

1

r2
dr =

C

%
, (A.13)

where C depends only on the a priori data. Finally, by estimates (A.9), (A.11) and (A.13) in (A.8), we
find

|I2| ≤ C1 +
C2

h
1
2

+
C3

%
, (A.14)

where C1, C2, C3 depend on the a priori data.
For the first integral in (A.7), we use the following decomposition of the domain D0 = (D0 ∩ B%(P )) ∪
(D0 \B%(P )), that is

|I1| ≥
∣∣∣∣ ∫
D0∩B%(P )

∇G]0(x, ξh) · ∇G]1(x, ξh) dx

∣∣∣∣+
−
∣∣∣∣ ∫
D0\B%(P )

∇G]0(x, ξh) · ∇G]1(x, ξh) dx

∣∣∣∣ =: |I11| − |I12|
(A.15)

The term I12 can be estimated using the same procedure adopted for I2, hence

|I12| ≤ C1 +
C2

h
1
2

+
C3

%
. (A.16)

In I11 we add and subtract the gradient of the biphase fundamental solution Γ̂1, that is

|I11| ≥
∣∣∣∣ ∫
D0∩B%(P )

∇Γ̂0(x, ξh) · ∇Γ̂1(x, ξh) dx

∣∣∣∣+
−
∣∣∣∣ ∫
D0∩B%(P )

[
∇G]0(x, ξh)−∇Γ̂0(x, ξh)

]
· ∇G]1(x, ξh) dx

∣∣∣∣ =: |I111| − |I112|.

For the estimation of I112 we use (4.6) and (4.7), that is

|I112| ≤ C
∫

Ω]\Bh(ξh)

|∇G]1(x, ξh)| dx ≤ C

h
1
2

. (A.17)
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In the term I111, we add and subtract the gradient of the biphase fundamental solution Γ̂1, that is

|I111| ≥
∣∣∣∣ ∫
D0∩B%(P )

∇Γ̂0(x, ξh) · ∇Γ̂1(x, ξh) dx

∣∣∣∣+
−
∣∣∣∣ ∫
D0∩B%(P )

∇Γ̂0(x, ξh) ·
[
∇G]1(x, ξh)−∇Γ̂1(x, ξh)

]
dx

∣∣∣∣
=: |I1111| − |I1112|.

For the term I1112, we use similar arguments adopted in the previous calculations and (4.5), hence

|I1112| ≤
C

h
1
2

. (A.18)

Finally, from the results in [13, 17], we have that

|I1111| ≥
C

h
. (A.19)

From (A.15), by estimates (A.19), (A.18), (A.17) and (A.16), we find

|I1| ≥
C

h
− C1 −

C2

h
1
2

− C3

%
. (A.20)

Finally, using (A.20) and (A.14) into (A.7), we get

|S(ξh, ξh)| ≥ C

h

(
1− C1h

1
2 − C2h

%
− C3h

)
,

where the constants C,C1, C2, C3 depend on the a priori data. Therefore, there exists h > 0 such that,
for any 0 < h < h%, the estimate (4.16) follows.
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