We deal with the geometrical inverse problem of the shape reconstruction of cavities in a bounded linear isotropic medium by means of boundary data. The problem is addressed from the point of view of optimal control: the goal is to minimize in the class of Lipschitz domains a Kohn-Vogelius type functional with a perimeter regularization term which penalizes the perimeter of the cavity to be reconstructed. To solve numerically the optimization problem, we use a phase-field approach, approximating the perimeter functional with a Modica-Mortola relaxation and modeling the cavity as an inclusion with a very small elastic tensor. We provide a detailed analysis showing the robustness of the algorithm through some numerical experiments.

A phase-field approach for detecting cavities via a Kohn-Vogelius type functional / A. Aspri. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - 38:9(2022 Sep), pp. 094001.1-094001.42. [10.1088/1361-6420/ac82e4]

A phase-field approach for detecting cavities via a Kohn-Vogelius type functional

A. Aspri
Primo
Writing – Review & Editing
2022

Abstract

We deal with the geometrical inverse problem of the shape reconstruction of cavities in a bounded linear isotropic medium by means of boundary data. The problem is addressed from the point of view of optimal control: the goal is to minimize in the class of Lipschitz domains a Kohn-Vogelius type functional with a perimeter regularization term which penalizes the perimeter of the cavity to be reconstructed. To solve numerically the optimization problem, we use a phase-field approach, approximating the perimeter functional with a Modica-Mortola relaxation and modeling the cavity as an inclusion with a very small elastic tensor. We provide a detailed analysis showing the robustness of the algorithm through some numerical experiments.
Kohn-Vogelius functional; cavity; phase-field; linear elasticity; primal dual active set method
Settore MAT/05 - Analisi Matematica
Settore MAT/08 - Analisi Numerica
set-2022
18-ago-2022
https://iopscience.iop.org/article/10.1088/1361-6420/ac82e4/meta
Article (author)
File in questo prodotto:
File Dimensione Formato  
Aspri_22.pdf

Open Access dal 02/09/2023

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri
Aspri_2022_Inverse_Problems_38_094001.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/946229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact