The design of optimized protein antigens is a fundamental step in the development of new vaccine candidates and in the detection of therapeutic antibodies. A fundamental prerequisite is the identification of antigenic regions that are most prone to interact with antibodies, namely, B-cell epitopes. Here, we describe an efficient structure-based computational method for epitope prediction, called MLCE. In this approach, all that is required is the 3D structure of the antigen of interest. MLCE can be applied to glycosylated proteins, facilitating the identification of immunoreactive versus immune-shielding carbohydrates.

Computational Epitope Prediction and Design for Antibody Development and Detection / R. Capelli, S.A. Serapian, G. Colombo (METHODS IN MOLECULAR BIOLOGY). - In: Computer-Aided Antibody Design / [a cura di] K. Tsumoto, D. Kuroda. - [s.l] : Springer, 2023. - ISBN 978-1-0716-2608-5. - pp. 255-266 [10.1007/978-1-0716-2609-2_13]

Computational Epitope Prediction and Design for Antibody Development and Detection

R. Capelli;
2023

Abstract

The design of optimized protein antigens is a fundamental step in the development of new vaccine candidates and in the detection of therapeutic antibodies. A fundamental prerequisite is the identification of antigenic regions that are most prone to interact with antibodies, namely, B-cell epitopes. Here, we describe an efficient structure-based computational method for epitope prediction, called MLCE. In this approach, all that is required is the 3D structure of the antigen of interest. MLCE can be applied to glycosylated proteins, facilitating the identification of immunoreactive versus immune-shielding carbohydrates.
Epitope prediction; Molecular design; Molecular dynamics; Antibodies; Epitopes, B-Lymphocyte; Antigens; Epitope Mapping; Computational Biology; Vaccines
Settore BIO/10 - Biochimica
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore CHIM/02 - Chimica Fisica
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
molSci-GC-Methods.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
978-1-0716-2609-2_13.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 375.12 kB
Formato Adobe PDF
375.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/945268
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact