To unveil how forearc lithosphere cools and re-equilibrates, we carried out a comprehensive geothermometric investigation of the New Caledonia ophiolite, which represents a rare example of proto-arc section generated during subduction infancy. A large dataset, including more than eighty samples (peridotites and mafic-ultramafic intrusives), was considered. Closure temperatures calculated for the lherzolites using slow (TREE-Y) and fast diffusing (TCa-in-Opx, TBKN, TCa-in-Ol, TOl-Sp) geothermometers provide some of the highest values ever documented for ophiolitic peridotites, akin to modern sub-oceanic mantle. Cooling rates deduced from TREE-Y and TBKN yield values of ≈ 10-3 °C/y, similar to those obtained with TCa-in-Ol. These features are consistent with a post-melting history of emplacement, possibly along a transform fault, and thermal re-equilibration via conduction. Cpx-free harzburgites register a high-T evolution, followed by quenching and obduction. The relatively high TCa-in-Ol, TOl-Sp and cooling rates computed from TCa-in-Ol (≈ 10-3 °C/y) are atypical for this geodynamic setting, mirroring the development of an ephemeral subduction system, uplift and emplacement of the Peridotite Nappe. Temperature profiles across the crust-mantle transect point to high closure temperatures, with limited variations with depth. These results are indicative of injection and crystallization of non-cogenetic magma batches in the forearc lithosphere, followed by thermal re-equilibration at rates of ≈ 10-4-10-3 °C/y. Our study shows that the thermal conditions recorded by forearc sequences are intimately related to specific areal processes and previous lithospheric evolution. Thus, detailed sampling and exhaustive knowledge of the geological background are critical to unravel the cooling mechanisms in this geodynamic setting.

Temperatures and cooling rates recorded by the New Caledonia ophiolite: implications for cooling mechanisms in young forearc sequences / A. Secchiari, A. Montanini, D. Cluzel. - In: GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS. - ISSN 1525-2027. - 23:1(2022 Jan), pp. e2021GC009859.1-e2021GC009859.21. [10.1029/2021GC009859]

Temperatures and cooling rates recorded by the New Caledonia ophiolite: implications for cooling mechanisms in young forearc sequences

A. Secchiari
Primo
;
2022

Abstract

To unveil how forearc lithosphere cools and re-equilibrates, we carried out a comprehensive geothermometric investigation of the New Caledonia ophiolite, which represents a rare example of proto-arc section generated during subduction infancy. A large dataset, including more than eighty samples (peridotites and mafic-ultramafic intrusives), was considered. Closure temperatures calculated for the lherzolites using slow (TREE-Y) and fast diffusing (TCa-in-Opx, TBKN, TCa-in-Ol, TOl-Sp) geothermometers provide some of the highest values ever documented for ophiolitic peridotites, akin to modern sub-oceanic mantle. Cooling rates deduced from TREE-Y and TBKN yield values of ≈ 10-3 °C/y, similar to those obtained with TCa-in-Ol. These features are consistent with a post-melting history of emplacement, possibly along a transform fault, and thermal re-equilibration via conduction. Cpx-free harzburgites register a high-T evolution, followed by quenching and obduction. The relatively high TCa-in-Ol, TOl-Sp and cooling rates computed from TCa-in-Ol (≈ 10-3 °C/y) are atypical for this geodynamic setting, mirroring the development of an ephemeral subduction system, uplift and emplacement of the Peridotite Nappe. Temperature profiles across the crust-mantle transect point to high closure temperatures, with limited variations with depth. These results are indicative of injection and crystallization of non-cogenetic magma batches in the forearc lithosphere, followed by thermal re-equilibration at rates of ≈ 10-4-10-3 °C/y. Our study shows that the thermal conditions recorded by forearc sequences are intimately related to specific areal processes and previous lithospheric evolution. Thus, detailed sampling and exhaustive knowledge of the geological background are critical to unravel the cooling mechanisms in this geodynamic setting.
Settore GEO/07 - Petrologia e Petrografia
gen-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Secchiari et al., 2022 G3.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/944794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact