The disaccharide trehalose is a well-established autophagy inducer, but its therapeutic application is severely hampered by its low potency and poor pharmacokinetic profile. Thus, we targeted the rational design and synthesis of trehalose-based small molecules and nano objects to overcome such issues. Among several rationally designed trehalose-centered putative autophagy inducers, we coupled trehalose via suitable spacers with known self-assembly inducer squalene to yield two nanolipid-trehalose conjugates. Squalene is known for its propensity, once linked to a bioactive compound, to assemble in aqueous media in controlled conditions, internalizing its payload and forming nanoassemblies with better pharmacokinetics. We assembled squalene conjugates to produce the corresponding nanoassemblies, characterized by a hydrodynamic diameter of 188 and 184 nm and a high stability in aqueous media as demonstrated by the measured Z-potential. Moreover, the nanoassemblies were characterized for their toxicity and capability to induce autophagy in vitro.
Squalene-Based Nano-Assemblies Improve the Pro-Autophagic Activity of Trehalose / G. Frapporti, E. Colombo, H. Ahmed, G. Assoni, L. Polito, P. Randazzo, D. Arosio, P. Seneci, G. Piccoli. - In: PHARMACEUTICS. - ISSN 1999-4923. - 14:4(2022 Apr 14), pp. 862.1-862.17. [10.3390/pharmaceutics14040862]
Squalene-Based Nano-Assemblies Improve the Pro-Autophagic Activity of Trehalose
L. Polito;P. Seneci
;
2022
Abstract
The disaccharide trehalose is a well-established autophagy inducer, but its therapeutic application is severely hampered by its low potency and poor pharmacokinetic profile. Thus, we targeted the rational design and synthesis of trehalose-based small molecules and nano objects to overcome such issues. Among several rationally designed trehalose-centered putative autophagy inducers, we coupled trehalose via suitable spacers with known self-assembly inducer squalene to yield two nanolipid-trehalose conjugates. Squalene is known for its propensity, once linked to a bioactive compound, to assemble in aqueous media in controlled conditions, internalizing its payload and forming nanoassemblies with better pharmacokinetics. We assembled squalene conjugates to produce the corresponding nanoassemblies, characterized by a hydrodynamic diameter of 188 and 184 nm and a high stability in aqueous media as demonstrated by the measured Z-potential. Moreover, the nanoassemblies were characterized for their toxicity and capability to induce autophagy in vitro.File | Dimensione | Formato | |
---|---|---|---|
pharmaceutics-14-00862.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
2.83 MB
Formato
Adobe PDF
|
2.83 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.