In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.
A quantum analytical Adam descent through parameter shift rule using Qibo / M. Robbiati, S. Efthymiou, A. Pasquale, S. Carrazza. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - (2022 Jun 15). (Intervento presentato al 41. convegno International Conference on High Energy Physics ICHEP tenutosi a Bologna : 6-13 luglio nel 2022) [10.22323/1.414.0206].
A quantum analytical Adam descent through parameter shift rule using Qibo
A. Pasquale;S. Carrazza
2022
Abstract
In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.File | Dimensione | Formato | |
---|---|---|---|
2210.10787.pdf
accesso aperto
Tipologia:
Altro
Dimensione
384.34 kB
Formato
Adobe PDF
|
384.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.