Seawater sulfate is one of the largest oxidant pools at Earth's surface today and its concentration in the oceans is generally assumed to have varied between 5 and 28 mM since the early Phanerozoic Eon. Intermittent and potentially global Oceanic Anoxic Events (OAEs) are accompanied by changes in seawater sulfate concentrations and signal perturbations in the Earth system associated with major climatic anomalies and biological crises. Ferruginous (Fe-rich) ocean conditions developed transiently during multiple OAEs, implying strong variability in seawater chemistry and global biogeochemical cycles. The precise evolution of seawater sulfate concentrations during OAEs, however, is uncertain and thus models that aim to mechanistically link oceanic anoxia to broad-scale disruptions in the Earth system remain incomplete. We use analyses of Fe-speciation and redox sensitive trace metals in sediments deposited in the Tethys and Pacific oceans to constrain seawater sulfate concentrations and underlying dynamics in marine chemistry during OAE1a, similar to 120 Ma. We find that large parts of the global oceans were anoxic and ferruginous for more than 1 million years. Calculations show that the development of ferruginous conditions requires that seawater sulfate concentrations drop below 600 mu M and possibly below 100 mu M, which is an order of magnitude lower than previous minimum estimates. Such a collapse of the seawater sulfate pool in less than one-hundred thousand years is a key and previously unrecognized feature of Phanerozoic Earth surface redox budgets. This sensitivity of the Earth system to changes in seawater sulfate concentrations illustrates potential for dramatically altered global biogeochemical cycles with corresponding climate impacts on remarkably short timescales.

Ferruginous oceans during OAE1a and collapse of the marine sulfate pool / K.W. Bauer, C. Bottini, S. Katsev, M. Jellinek, R. Francois, E. Erba, S.A. Crowe. - In: EARTH AND PLANETARY SCIENCE LETTERS. - ISSN 0012-821X. - 578:(2022 Jan 15), pp. 117324.1-117324.12. [10.1016/j.epsl.2021.117324]

Ferruginous oceans during OAE1a and collapse of the marine sulfate pool

C. Bottini
Secondo
;
E. Erba
Penultimo
;
2022

Abstract

Seawater sulfate is one of the largest oxidant pools at Earth's surface today and its concentration in the oceans is generally assumed to have varied between 5 and 28 mM since the early Phanerozoic Eon. Intermittent and potentially global Oceanic Anoxic Events (OAEs) are accompanied by changes in seawater sulfate concentrations and signal perturbations in the Earth system associated with major climatic anomalies and biological crises. Ferruginous (Fe-rich) ocean conditions developed transiently during multiple OAEs, implying strong variability in seawater chemistry and global biogeochemical cycles. The precise evolution of seawater sulfate concentrations during OAEs, however, is uncertain and thus models that aim to mechanistically link oceanic anoxia to broad-scale disruptions in the Earth system remain incomplete. We use analyses of Fe-speciation and redox sensitive trace metals in sediments deposited in the Tethys and Pacific oceans to constrain seawater sulfate concentrations and underlying dynamics in marine chemistry during OAE1a, similar to 120 Ma. We find that large parts of the global oceans were anoxic and ferruginous for more than 1 million years. Calculations show that the development of ferruginous conditions requires that seawater sulfate concentrations drop below 600 mu M and possibly below 100 mu M, which is an order of magnitude lower than previous minimum estimates. Such a collapse of the seawater sulfate pool in less than one-hundred thousand years is a key and previously unrecognized feature of Phanerozoic Earth surface redox budgets. This sensitivity of the Earth system to changes in seawater sulfate concentrations illustrates potential for dramatically altered global biogeochemical cycles with corresponding climate impacts on remarkably short timescales.
ocean redox; oceanic anoxic events; iron speciation; paleoceanography; geochemistry; marine sulfur cycling; seawater sulfate
Settore GEO/02 - Geologia Stratigrafica e Sedimentologica
Settore GEO/01 - Paleontologia e Paleoecologia
Settore GEO/08 - Geochimica e Vulcanologia
PRIN201719EERBA_01 - BIOTA RESILIENCE TO GLOBAL CHANGE: BIOMINERALIZATION OF PLANKTIC AND BENTHIC CALCIFIERS IN THE PAST, PRESENT AND FUTURE - ERBA, ELISABETTA - PRIN2017 - PRIN bando 2017 - 2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bauer+et+al.,+2021+-+EPSL_Main+Text_REVISED_V2.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
1-s2.0-S0012821X2100580X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/939068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact