As a reference laboratory for measles and rubella surveillance in Lombardy, we evaluated the association between SARS-CoV-2 infection and measles-like syndromes, providing preliminary evidence for undetected early circulation of SARS-CoV-2. Overall, 435 samples from 156 cases were investigated. RNA from oropharyngeal swabs (N = 148) and urine (N = 141) was screened with four hemi-nested PCRs and molecular evidence for SARS-CoV-2 infection was found in 13 subjects. Two of the positive patients were from the pandemic period (2/12, 16.7%, March 2020–March 2021) and 11 were from the pre-pandemic period (11/44, 25%, August 2019–February 2020). Sera (N = 146) were tested for anti-SARS-CoV-2 IgG, IgM, and IgA antibodies. Five of the RNA-positive individuals also had detectable anti-SARS-CoV-2 antibodies. No strong evidence of infection was found in samples collected between August 2018 and July 2019 from 100 patients. The earliest sample with evidence of SARS-CoV-2 RNA was from September 12, 2019, and the positive patient was also positive for anti-SARS-CoV-2 antibodies (IgG and IgM). Mutations typical of B.1 strains previously reported to have emerged in January 2020 (C3037T, C14408T, and A23403G), were identified in samples collected as early as October 2019 in Lombardy. One of these mutations (C14408T) was also identified among sequences downloaded from public databases that were obtained by others from samples collected in Brazil in November 2019. We conclude that a SARS-CoV-2 progenitor capable of producing a measles-like syndrome may have emerged in late June-late July 2019 and that viruses with mutations characterizing B.1 strain may have been spreading globally before the first Wuhan outbreak. Our findings should be complemented by high-throughput sequencing to obtain additional sequence information. We highlight the importance of retrospective surveillance studies in understanding the early dynamics of COVID-19 spread and we encourage other groups to perform retrospective investigations to seek confirmatory proofs of early SARS-CoV-2 circulation.

Molecular evidence for SARS-CoV-2 in samples collected from patients with morbilliform eruptions since late 2019 in Lombardy, northern Italy / A. Amendola, M. Canuti, S. Bianchi, S. Kumar, C. Fappani, M. Gori, D. Colzani, S.L.K. Pond, S. Miura, M. Baggieri, A. Marchi, E. Borghi, G. Zuccotti, M.C. Raviglione, F. Magurano, E. Tanzi. - In: ENVIRONMENTAL RESEARCH. - ISSN 0013-9351. - 215:part 1(2022 Dec), pp. 113979.1-113979.9. [10.1016/j.envres.2022.113979]

Molecular evidence for SARS-CoV-2 in samples collected from patients with morbilliform eruptions since late 2019 in Lombardy, northern Italy

A. Amendola
Primo
;
M. Canuti
Secondo
;
S. Bianchi;C. Fappani;M. Gori;D. Colzani;E. Borghi;G. Zuccotti;M.C. Raviglione;E. Tanzi
Ultimo
2022

Abstract

As a reference laboratory for measles and rubella surveillance in Lombardy, we evaluated the association between SARS-CoV-2 infection and measles-like syndromes, providing preliminary evidence for undetected early circulation of SARS-CoV-2. Overall, 435 samples from 156 cases were investigated. RNA from oropharyngeal swabs (N = 148) and urine (N = 141) was screened with four hemi-nested PCRs and molecular evidence for SARS-CoV-2 infection was found in 13 subjects. Two of the positive patients were from the pandemic period (2/12, 16.7%, March 2020–March 2021) and 11 were from the pre-pandemic period (11/44, 25%, August 2019–February 2020). Sera (N = 146) were tested for anti-SARS-CoV-2 IgG, IgM, and IgA antibodies. Five of the RNA-positive individuals also had detectable anti-SARS-CoV-2 antibodies. No strong evidence of infection was found in samples collected between August 2018 and July 2019 from 100 patients. The earliest sample with evidence of SARS-CoV-2 RNA was from September 12, 2019, and the positive patient was also positive for anti-SARS-CoV-2 antibodies (IgG and IgM). Mutations typical of B.1 strains previously reported to have emerged in January 2020 (C3037T, C14408T, and A23403G), were identified in samples collected as early as October 2019 in Lombardy. One of these mutations (C14408T) was also identified among sequences downloaded from public databases that were obtained by others from samples collected in Brazil in November 2019. We conclude that a SARS-CoV-2 progenitor capable of producing a measles-like syndrome may have emerged in late June-late July 2019 and that viruses with mutations characterizing B.1 strain may have been spreading globally before the first Wuhan outbreak. Our findings should be complemented by high-throughput sequencing to obtain additional sequence information. We highlight the importance of retrospective surveillance studies in understanding the early dynamics of COVID-19 spread and we encourage other groups to perform retrospective investigations to seek confirmatory proofs of early SARS-CoV-2 circulation.
SARS-CoV-2; COVID-19; Pandemic; Emergence; Measles; Rash
Settore MED/42 - Igiene Generale e Applicata
Settore MED/07 - Microbiologia e Microbiologia Clinica
Settore BIO/19 - Microbiologia Generale
Settore MED/38 - Pediatria Generale e Specialistica
dic-2022
25-ago-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
AmendolaA_EnvironmentalResearch2022.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/938369
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact