Following Eilenberg-Steenrod axiomatic approach we construct the universal ordinary homology theory for any homological structure on a given category by representing ordinary theories with values in abelian categories. For a convenient category of spaces we then obtain a universal abelian category which can be actually described for CW-complexes as the category of hieratic modules.

On topological motives / L. BARBIERI VIALE. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 314:(2022 Jun 01), pp. 108141.1-108141.23. [10.1016/j.topol.2022.108141]

On topological motives

L. BARBIERI VIALE
2022

Abstract

Following Eilenberg-Steenrod axiomatic approach we construct the universal ordinary homology theory for any homological structure on a given category by representing ordinary theories with values in abelian categories. For a convenient category of spaces we then obtain a universal abelian category which can be actually described for CW-complexes as the category of hieratic modules.
Mathematics; Algebraic Geometry; Mathematics; Algebraic Topology; Mathematics; Category Theory; Mathematics; K-Theory and Homology;
Settore MAT/03 - Geometria
Article (author)
File in questo prodotto:
File Dimensione Formato  
TopMotPubl.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 497.33 kB
Formato Adobe PDF
497.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2107.07993.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 337.78 kB
Formato Adobe PDF
337.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/930351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact