On a Lie group G, we investigate the discreteness of the spectrum of Schrödinger operators of the form L+V, where L is a subelliptic sub-Laplacian on G and the potential V is a locally integrable function which is bounded from below. We prove general necessary and sufficient conditions for arbitrary potentials, and we obtain explicit characterizations when V is a polynomial on G or belongs to a local Muckenhoupt class. We finally discuss how to transfer our results to weighted sub-Laplacians on G.
Schrödinger operators on Lie groups with purely discrete spectrum / T. Bruno, M. Calzi. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 404:(2022 Aug 06), pp. 108444.1-108444.45. [10.1016/j.aim.2022.108444]
Schrödinger operators on Lie groups with purely discrete spectrum
T. Bruno
Primo
;M. CalziUltimo
2022
Abstract
On a Lie group G, we investigate the discreteness of the spectrum of Schrödinger operators of the form L+V, where L is a subelliptic sub-Laplacian on G and the potential V is a locally integrable function which is bounded from below. We prove general necessary and sufficient conditions for arbitrary potentials, and we obtain explicit characterizations when V is a polynomial on G or belongs to a local Muckenhoupt class. We finally discuss how to transfer our results to weighted sub-Laplacians on G.File | Dimensione | Formato | |
---|---|---|---|
BC_final.pdf
accesso aperto
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
595.65 kB
Formato
Adobe PDF
|
595.65 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0001870822002614-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
656.56 kB
Formato
Adobe PDF
|
656.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.