Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared by wet impregnation, while bi-metallic photocatalysts were obtained via deposition-precipitation (DP). The relationship between the physico-chemical properties and the catalyst's behavior for various photo-synthetic processes, such as carbon dioxide photo-reduction to liquid products and glucose photo-reforming to hydrogen have been investigated. Among the tested materials, the catalysts containing platinum alone (i.e., 0.1 mol% Pt/TiO2) or bi-metallic gold-containing materials (e.g., 1 wt% (AuxAgy)/TiO2 and 1 wt% (AuxPtz)/TiO2) showed the highest activity, presenting the best results in terms of productivity and conversion for both applications. The textural, structural and morphological properties of the different samples being very similar, the main parameters to improve performance were function of the metal as electron sink, together with optoelectronic properties. The high activity in both applications was related to the low band gap, that allows harvesting more energy from a polychromatic light source with respect to the bare TiO2. Overall, high selectivity and productivity were achieved with respect to most literature data.

Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on {TiO}2 for Renewable Processes / F. Conte, I.G. Rossetti, G. Ramis, C. Vaulot, S. Hajjar-Garreau, S. Bennici. - In: MATERIALS. - ISSN 1996-1944. - 15:8(2022 Apr), pp. 2915.1-2915.19. [10.3390/ma15082915]

Low Metal Loading (Au, Ag, Pt, Pd) Photo-Catalysts Supported on {TiO}2 for Renewable Processes

F. Conte
Primo
;
I.G. Rossetti
Secondo
;
2022

Abstract

Photo-catalysts based on titanium dioxide, and modified with highly dispersed metallic nanoparticles of Au, Ag, Pd and Pt, either mono- or bi-metallic, have been analyzed by multiple characterization techniques, including XRD, XPS, SEM, EDX, UV-Vis and N2 adsorption/desorption. Mono-metallic photo-catalysts were prepared by wet impregnation, while bi-metallic photocatalysts were obtained via deposition-precipitation (DP). The relationship between the physico-chemical properties and the catalyst's behavior for various photo-synthetic processes, such as carbon dioxide photo-reduction to liquid products and glucose photo-reforming to hydrogen have been investigated. Among the tested materials, the catalysts containing platinum alone (i.e., 0.1 mol% Pt/TiO2) or bi-metallic gold-containing materials (e.g., 1 wt% (AuxAgy)/TiO2 and 1 wt% (AuxPtz)/TiO2) showed the highest activity, presenting the best results in terms of productivity and conversion for both applications. The textural, structural and morphological properties of the different samples being very similar, the main parameters to improve performance were function of the metal as electron sink, together with optoelectronic properties. The high activity in both applications was related to the low band gap, that allows harvesting more energy from a polychromatic light source with respect to the bare TiO2. Overall, high selectivity and productivity were achieved with respect to most literature data.
CO2 photo-reduction; TiO2; photo-catalysis; photo-reactor; photo-reforming;
Settore ING-IND/25 - Impianti Chimici
apr-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
PhotoRed-CO2_Materials Simona B.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/924402
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact