Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump Next® (Optojump) and Myotest Pro® (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r =.98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r =.81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.

Validity and reliability of two field-based leg stiffness devices: Implications for practical use / L. Ruggiero, S. Dewhurst, T.M. Bampouras. - In: JOURNAL OF APPLIED BIOMECHANICS. - ISSN 1065-8483. - 32:4(2016), pp. 415-419. [10.1123/jab.2015-0297]

Validity and reliability of two field-based leg stiffness devices: Implications for practical use

L. Ruggiero
Primo
;
2016

Abstract

Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump Next® (Optojump) and Myotest Pro® (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r =.98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r =.81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.
Hopping test; Sensitivity; Test-retest; Vertical stiffness; Athletic Performance; Exercise Test; Humans; Lower Extremity; Male; Movement; Muscle, Skeletal; Reproducibility of Results; Sports Equipment; Young Adult
Settore BIO/09 - Fisiologia
2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
[15432688 - Journal of Applied Biomechanics] Validity and Reliability of Two Field-Based Leg Stiffness Devices Implications for Practical Use.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/923778
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact